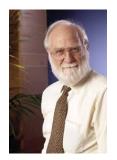


The AAMID consortium:

Mid Frequency Aperture Array

Wim van Cappellen, Consortium Lead



2015 SKA Engineering Meeting

- Brought to our attention by Ron Ekers
- Technological capability leads to discovery in astronomy
- A single technology saturates in capability
- Innovation is needed to continue exponential growth
- Review committees are risk averse and have a tendency to stick to traditional technologies.
- Adopting new technology leads to great rewards

- A very large field of view, and the opportunity of transient buffering
- A fast response time and pointing
- Multiple beams, concurrent observations
- A very high survey speed capability
- High sensitivity < 1.4 GHz
- Relatively low capital and operational costs
 - Low post-processing costs (large stations)
 - No moving parts
 - No vacuum, helium, cryogenics

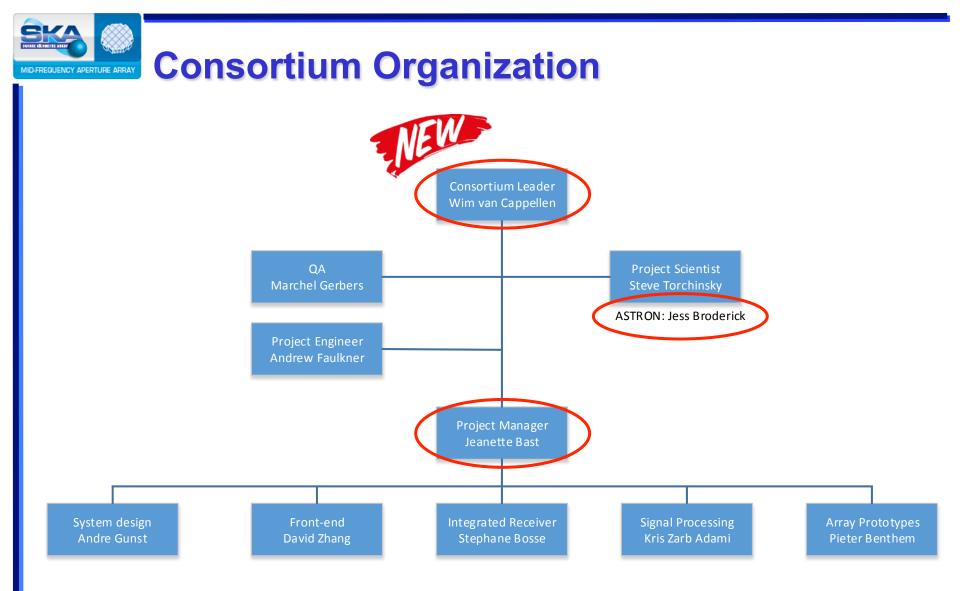
$$\mathsf{P}_{\text{imager}} = \mathsf{N}_{\text{op}} \underbrace{\frac{10^5}{3} \frac{\mathsf{T}_{\text{obs}} \mathsf{N}_{\text{stat}}^2}{\mathsf{f}_{\text{min}}} \frac{\mathsf{B}_{\text{max}}^2}{\mathsf{D}_{\text{stat}}^2}}_{\text{number of visibilities}} \left(\frac{\lambda_{\text{max}}^2 \mathsf{B}_{\text{max}}^2}{\mathsf{D}_{\text{stat}}^4} + \mathsf{N}_{\text{kernel}}^2 \right)$$

DFREQUENCY ADERTURE ARRAY MFAA will drive science discoveries

- Transients
 - J.P. Macquart: "There is no substitute for Field of View,

twice the beams = twice the science".

- FRB's, RRAT's, and many others.
- Pulsars
 - Bulk pulsar timing, high cadence long-term timing, vast improvement of on-source time, surveys
- HI
 - Deep survey, fast wide survey, regular re-observation
 - Local HI, Billion Galaxy Survey, Intensity Mapping
- Cosmic Magnetism


- AAMID Consortium Overview
- Towards SKA2-MFAA
- Schedule
- Highlights of AAMID activities
- Summary

- It is projected that an AAMID full telescope can be built for less than 1 B€ starting in 2025.
 - Sensitivity 10,000 m²/K
 - 100+ sq degrees Field of View
- The AAMID consortium aims to demonstrate maturity, competitiveness and cost-effectiveness of Mid-Frequency Aperture Arrays for SKA2.
- SKA Advanced Instrumentation Programme (AIP)
 - Innovative technology development

Mid Frequency Aperture Array

AAMID

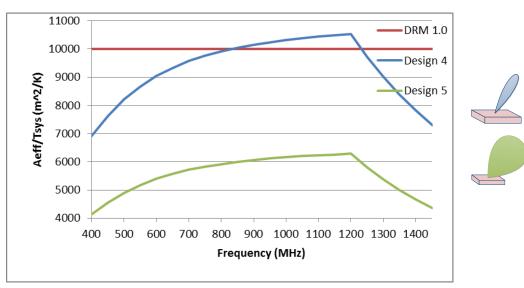
Consortium partners

Full members

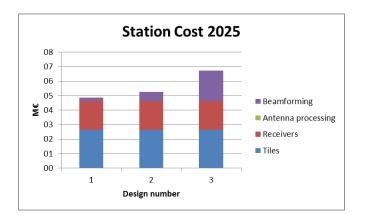
- ASTRON
- China: KLAASA
- Observatoire de Paris (Nancay)
- Stellenbosch University
- University of Bordeaux
- University of Cambridge
- University of Manchester

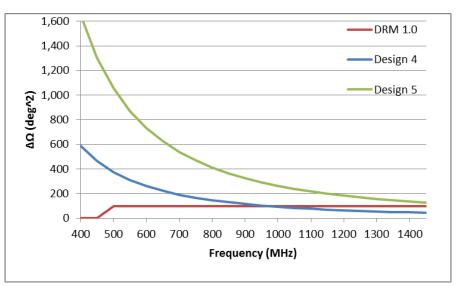
Associate members

- ENGAGE SKA (Portugal)
- SKA South Africa
- University of Malta
- University of Mauritius


System design, prototyping, management Receiver, antenna: 3x3 m² array Front-end MMIC's Antenna research ADC System design Front-end design

Renewable energy Site support Fractal ORA Front-end research





- Tailoring the design to optimally cover L0 requirements
- Several designs are traded-off

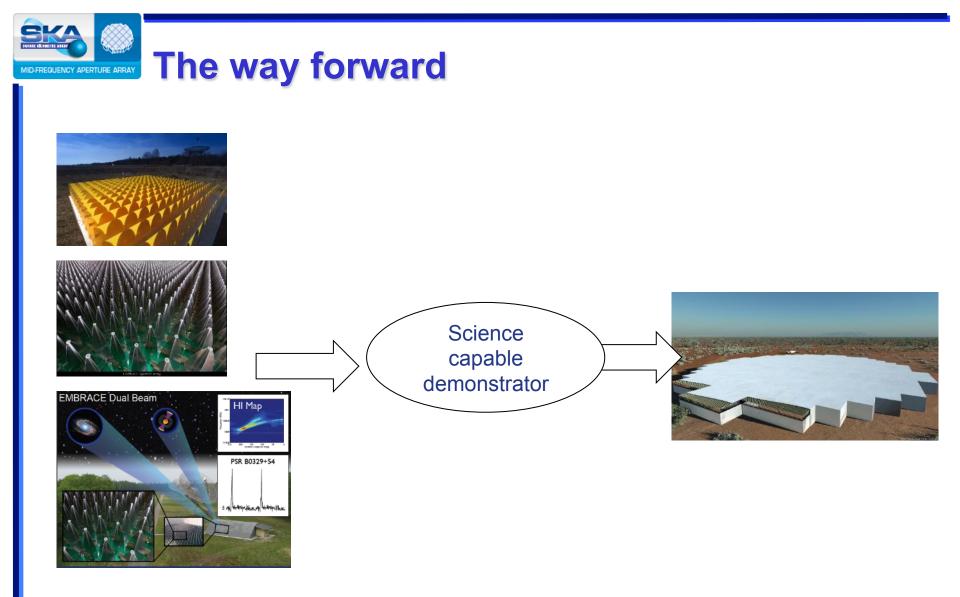
• SRR in April 2016

2015 SKA Engineering Meeting

- An AAMID full telescope can be built for less than 1 B€ starting in 2025.
- More detailed modeling ongoing in collaboration with the ASTRON & IBM Center for Exascale technology (DOME)

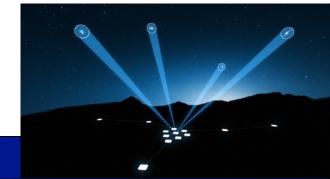
Item		Deployment Costs
1	AA stations (MFAA)	€550M
2	Infrastructure	€75M
3	Correlator	€50M
4	Image data processing	€240M
5	Data transport	€15M
6	Telescope manager	€10M
7	AIV	€5M
		€945M

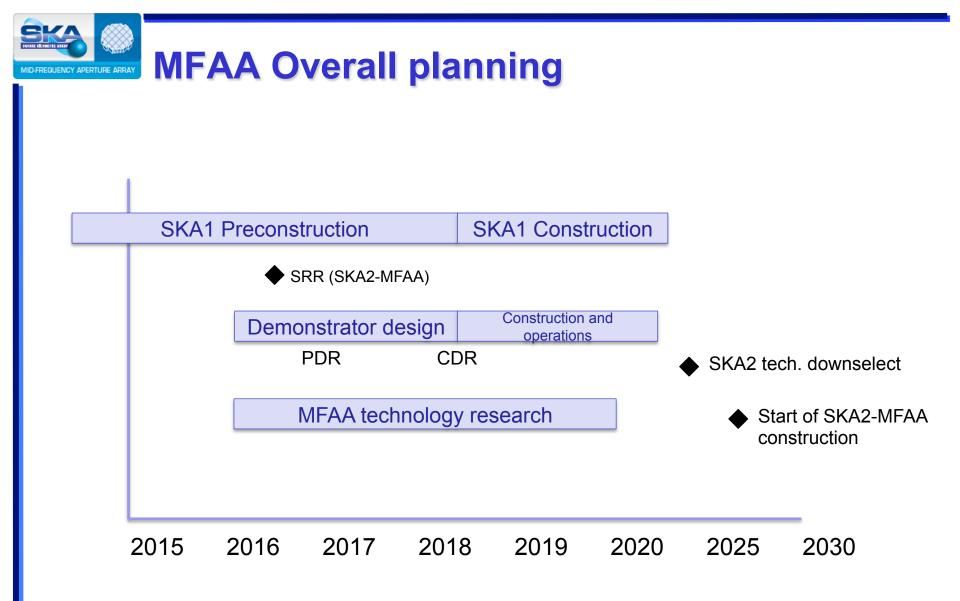
Source: MFAA system team



- Reducing the front-end capital costs
- Reducing of operating costs / power consumption
- Imaging dynamic range: Calibration down to thermal noise needs accurate beam and sky models to calibrate sources in near and far sidelobes

- Located on the South African SKA site
- Demonstrate feasibility and technological maturity
 - Technical verification
 - Science observations

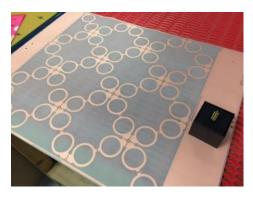


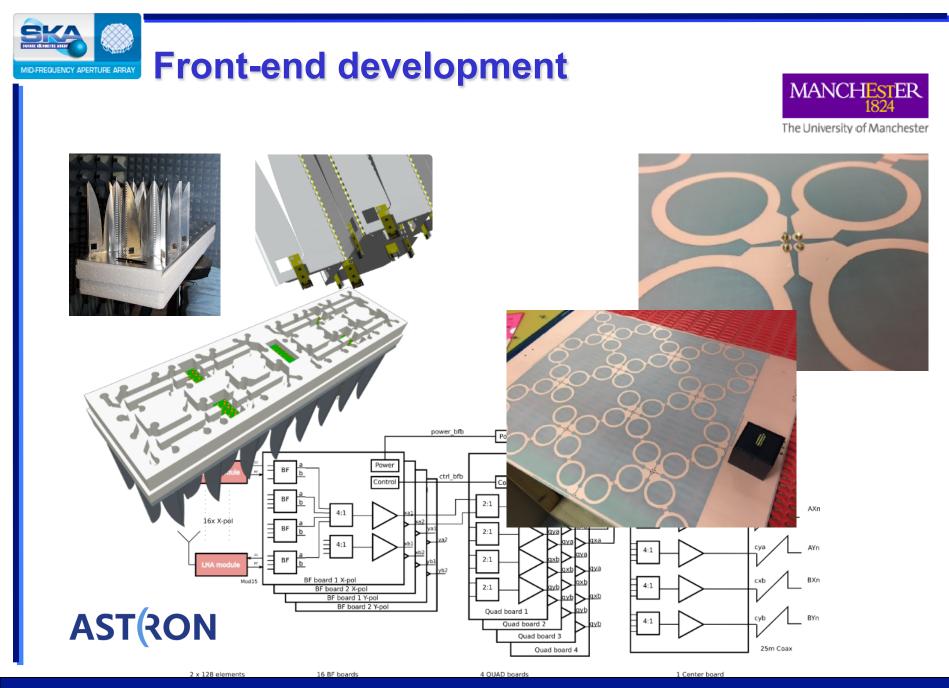

MIDFREQUENCY ADERTURE ARRAY POSSIBLE demonstrator specs

Parameter	Value or range	Units	
A _{eff} /T _{sys} at 1GHz	40	m²/K	
Frequency range	500 - 1500	MHz	
Bandwidth	>500	MHz	
Baseline length	300 - 1000	m	
Compactness	50%	A _{eff} inside 100m	
Number of stations	10 - 20		
Independent fields-of-view	≥2		
HPBW (FoV) at 1GHz	15 (175)	deg (deg ²)	
Polarizations	Full Stokes		

• A_e ~2000 m²

2015 SKA Engineering Meeting

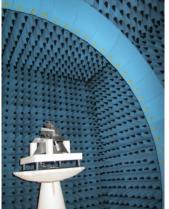


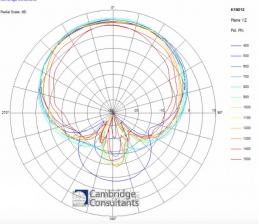


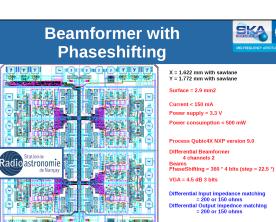
- Focus on Front-end development
 - Cost
 - Power consumption
 - Dense and sparse arrays
 - Environmental testing
- Performance and cost modeling of the entire SKA2-MFAA **telescope**



MIDFREQUENCY APERTURE ARRAY Front-end development




UNIVERSITY OF


CAMBRIDGE

Integrated receiver

BeamFormer with TimeDelay

1031 1030

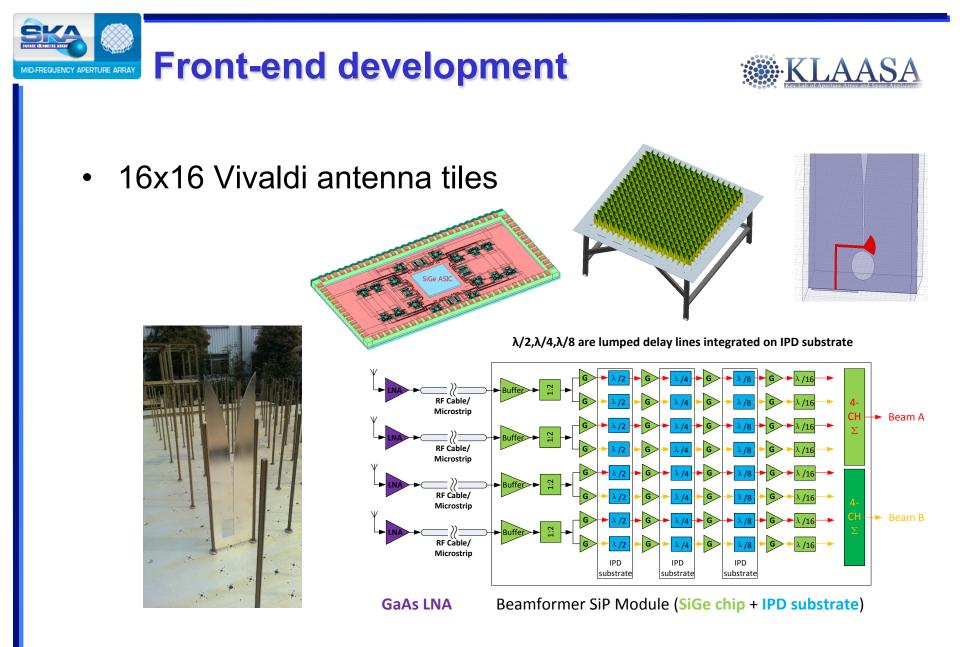
Radioastronomie

Digital control : I2C or SPI, supply = 3.3 V

X = 3.190 mm with sawland Y = 3.594 mm with sawland

Surface = 11.5 mm2

Current < 220 mA


Power supply = 3.3 V Power consumption = 720 mW

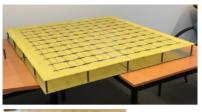
Frequency Band = [0.5 - 1.5 GHz] Process Qubic4Xi NXP version 9. Differential Beamformer 4 channels 2 Beams

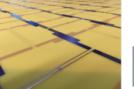
Delay = 1200 ps *2 , step = 20 ps VGA = 6 dB 4 bits Differential Input imp. matching = 150 ohms Differential Output imp. matchin = 150 ohms Dioltal control : I2C or SPI

2015 SKA Engineering Meeting

MFAA related technology research

- ASIC development for receiver and digital beamformer
- Photonics RFoF
- Alternative antenna types
- New production methods
 - 3D MID
 - 3D Printing
- Durable solutions
 - Bioplastics, biofoams (radome)
 - Energy

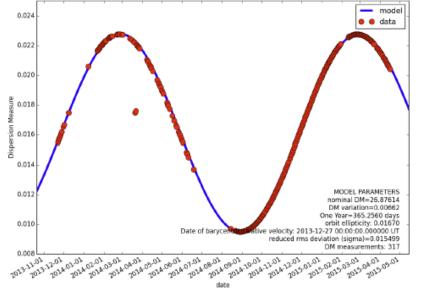




>**≯** Stenden

UNIVERSITEIT STELLENBOSCH UNIVERSITY

AAMID


EQUENCY APERTURE ARRAY EMBRACE: DM Seasonal Variation

- Pulsar monitoring
- B0329+54 at 970 MHz
- 317 pulse profile measurements between 18 Nov 2013 and 15 April 2015
- Tests stability and reliability of the system

EMBRACE@Nancay: Dispersion Measure towards PSR_0329+54 at 969.8MHz

317 measurements from 2013-11-18 to 2015-04-15

The Earth goes around the sun in one year!

S.A. Torchinsky et al., http://arxiv.org/abs/1504.03854

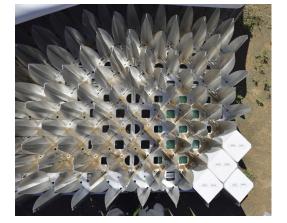
Station de

de Nancav

Radioastronomie

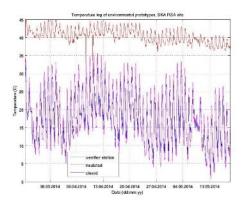
 Solar Ecli		with E	MBRA	Station de astronomie de Nançay
	The image cannot be displayed. Yo	ir computer may not have enough memory to open t tee the image and then insert it again.	he image, or the image may have been corrupt	id. Restart your computer, and then open the file again. If the red

IDFREGUENCY APERTURE ARRAY Environmental prototypes



- Environmental proto-types in the Karoo, South Africa
- Goal: Identify the "fuzzy" environmental design drivers
 - Dust, soil variation, erosion, vegetation, bugs, rodents, wildlife, birds, water, puddles, floods

Dust collection



Dust and pooling of water

Wire failed

Dust collection

UV impact on **PP**

Temp logging

2015 SKA Engineering Meeting

• MIDPREP / SKA AA-MID

Science and Engineering Workshop

- 7 9 March 2016
- Cape Town, South Africa

2015 SKA Engineering Meeting

- We should be courageous! Investment in new technology is essential for the continuation of discoveries in science
- SKA2-MFAA optimally uses new technology to enable key SKA2 science
- System with 10,000 m²/K and >100 sq degrees Field of View is projected at 1 B€ in 2025
- Working towards a science capable demonstrator

