Prototyping Dish LMC: Pointing activity

Adriano Ingallinera LMC Harmonisation Workshop Madrid 11-13 April 2016

Pointing coordinates

Equatorial system

- A source is characterized by:
- right ascension (RA)
- declination (DEC)

The equatorial system is (almost) unbounded to the Earth motion (rot+rev+prec): source RA and DEC do not change in time*

* this is not true!

Credits: wikipedia.org

Pointing coordinates

Horizontal system

- A source is characterized by:
- elevation or altitude (EI)
- azimuth (Az)
- Az and El are:
- local (dep. on lat,lon)
- time dependent (Earth rot.)
- epoch dependent (Eq. prec.)
- and more...

Credits: wikipedia.org

... they need to be corrected for "engineering" problems:

- static corrections:
 - collimation errors
 - o encoder (fixed) offset
 - o axis skew
 - o azimuth axis tilt
 - o structural flexure due to gravity
- dynamic corrections:
 - o thermal deformation
 - **wind**
 - o atmospheric refraction

Pointing coordinates

DISH

Example of gravity-induced deformation

70-m antenna at Goldstone

R.LMC.CC.SFW.ITM.1 LMC Receive pointing control	LMC shall receive time stamped, or in polynomial form, Az/EI pointing control commands from TM.
R.LMC.FMD.SFW.ISE.1 Sensor values reading by DS	LMC shall read all actual sensor values provided by DS with a time stamp resolution of 100ms (TBC), and an absolute time accuracy of 1ms (TBC).
R.LMC.CC.SFW.PNT.1 Configure static Dish Model Parameters	LMC shall use the static Dish Model Parameters provided by TM and store them in a file as default parameters. This model shall include structural deformations due to gravity.
R.LMC.CC.SFW.PNT.2 Configure dynamic Dish Model Parameters (if applicable)	LMC shall use a model provided by TM to compute pointing corrections based on sensors (tilt, Temp). (Formula to derive δAz , δEI)

R.LMC.CC.SFW.PNT.3 LMC interpolate pointing	LMC shall interpolate the Az/El time stamped (or polynomials) received by TM with a resolution on 0.1 s
R.LMC.CC.SFW.PNT.4 LMC compute static pointing corrections	LMC shall compute static pointing corrections based on static model parameters provided by TM and the interpolated values Az/EI: $\Delta Az=f(Az, El, static-param)$ $\Delta EI=f(Az, El, static-param)$
R.LMC.CC.SFW.PNT.5 LMC compute dynamic pointing corrections (if applicable)	LMC shall compute dynamic pointing corrections based on the dynamical model provided by TM, the interpolated values Az/EI and the tilt sensors: $\delta Az = f(Az, EI, sensors)$ $\delta EI = f(Az, EI, sensors)$

R.LMC.CC.SFW.PNT.6 LMC compute corrected time stamped Az EI	LMC shall compute corrected time stamped Az/EI: Az'=Az+ΔAz+δAz EI'=EI+ΔEI+δEI
R.LMC.CC.SFW.PNT.7 LMC send pointing control to DS	LMC shall send the time stamped corrected pointing commands to DS through the ISE service.
R.LMC.FMD.SFW.ITM.2 AZ/EL list continuous transmission to TM	LMC, while DS is in the operating states, shall send to TM with a time resolution of 100ms (TBC) and a timing accuracy of 1ms (TBC), time stamped estimated Az/ EL values.

R.LMC.FMD.SFW.ARC.1 AZ/EL list continuous archive	LMC, while DS is in the operating states, shall archive time stamped estimated Az/EI pointing positions (compensated for local corrections) with a time resolution of 100ms (TBC) and a timing accuracy of 1ms (TBC).
R.LMC.FMD.SFW.MON.1 Sensor values aggregation	LMC shall package all gravity, tilt and other sensors values that are used to apply local pointing corrections, in a data packet with a time stamp resolution of 100ms (TBC), and an absolute time accuracy of 1ms (TBC).

R.LMC.FMD.SFW.ITM.3 Sensor values transmission to TM	LMC shall report data packets about all gravity, tilt and other sensors values that are used to apply local pointing corrections to TM, with time stamp resolution of 100ms (TBC), and an absolute time accuracy of 1ms (TBC).
R.LMC.FMD.SFW.ARC.2 Sensor values archiving	LMC shall archive data packets about all gravity, tilt and other sensors values that are used to apply local pointing corrections with a time stamp resolution of 100ms (TBC), and an absolute time accuracy of 1ms (TBC).

LMC blocks involved

Pointing class diagram

«block»
Pointing
Namespace = Pointing
first_azimuth : Double first_elevation : Double first_time : Double last_azimuth : Double last_elevation : Double last_elevation : Double last_time : Double interp_azimuth : Array of Double interp_elevation : Array of Double static_delta : Array of Double static_paramaters : Array of Double dynamic_delta : Array of Double dynamic_factors : Array of Double dynamic_sensors : Array of Double
operations ExpandCoordinates(coordinates : String) StaticCorrection(index : Integer) DynamicCorrection(index : Integer) CorrectCoordinates() SendCoordinatesToDS(corrected_coordinates : String) SendCoordinatesToTM(corrected_coordinates : String) AggregateSensorValues()

Pointing activity diagram

Sequence diagram

Pointing simulation

Assumption:

- TM sends time-stamped (Az,EI) once per second
- DS exposes a command to receive corrected coordinates
- static correction formula is derived from Noto antenna
- dynamic correction is a simple algebraic operation

Thank you!