

Name Designation Affiliation Signature

Authored by:

A. Cremonini

Et al.
System

Engineer

SKAO

Date:

Owned by:

A. Cremonini
System

Engineer
SKAO

Date:

Approved by:

T.J Stevenson
Chief

Systems
Engineer

SKAO

Date:

Released by:

A. McPherson
Head of
Project

SKAO

Date:

LMC HARMONISATION THROUGH TELESCOPES

Document number ... 000-000000-003
Document type .. PLN
Revision ... 01
Author .. A.Cremonini, C.Knapic
Date .. 2016-02-26
Document Classification ... UNRESTRICTED
Status .. Released

Mar 1, 2016

Mar 1, 2016

Mar 1, 2016

Mar 1, 2016

https://skaoffice.na1.echosign.com/verifier?tx=CBJCHBCAABAAQyNSB475dWFLT0LiiUkB_tEeXfsBYeqY
https://skaoffice.na1.echosign.com/verifier?tx=CBJCHBCAABAAQyNSB475dWFLT0LiiUkB_tEeXfsBYeqY
https://skaoffice.na1.echosign.com/verifier?tx=CBJCHBCAABAAQyNSB475dWFLT0LiiUkB_tEeXfsBYeqY
https://skaoffice.na1.echosign.com/verifier?tx=CBJCHBCAABAAQyNSB475dWFLT0LiiUkB_tEeXfsBYeqY

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 2 of 42

DOCUMENT HISTORY
Revision Date Of Issue Engineering Change

Number

Comments

A 2015-11-18 - Approved and Released Template

01 2016-02-26 - First release

DOCUMENT SOFTWARE
 Package Version Filename

Word processor MS Word Word 2007 000-000000-003_01_LMCHarmonisationThruTel

Block diagrams

Other

ORGANISATION DETAILS
Name SKA Organisation

Registered Address Jodrell Bank Observatory

Lower Withington

Macclesfield

Cheshire

SK11 9DL

United Kingdom

Registered in England & Wales

Company Number: 07881918

Fax. +44 (0)161 306 9600

Website www.skatelescope.org

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 3 of 42

TABLE OF CONTENTS

1 INTRODUCTION ... 6

1.1 Purpose of the document ... 6
1.2 Scope of the document ... 6
1.3 Credits ... 6

2 REFERENCES .. 7

2.1 Applicable documents... 7
2.2 Reference documents ... 7

3 EXECUTIVE SUMMARY .. 8

4 TANGO TRAINING AND CONTROL SYSTEM BEST PRACTICES.. 9

5 USE CASES DISCUSSION OUTCOME ... 9

5.1 TANGO Paradigm .. 9
5.2 TANGO States .. 10
5.3 Single Point of access between TM and Elements .. 10
5.4 TANGO Scope .. 10
5.5 Naming Convention .. 10
5.6 Architecture Leadership .. 10
5.7 Workflows ... 10
5.8 Logging and historical information: .. 11
5.9 Security ... 11

6 LMC HARMONISATION PROCESS DESCRIPTION ... 12

7 AGREEMENTS, ISSUES AND ACTIONS ... 15

8 APPENDIX A – USE CASES AND MODERATOR COMMENTS 16

9 APPENDIX B - AGREED IMPLEMENTATION SOLUTIONS ... 42

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 4 of 42

LIST OF FIGURES

Figure 1: Peer review process description (H. Schnetler) ... 14

LIST OF TABLES

Table 1: Proposed Peer review Meeting dates and Venues ... 13
Table 2: Workshop Template for List of Agreement, Issues and Actions ... 15

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 5 of 42

LIST OF ABBREVIATIONS

LIG LMC Interface Guidelines

LMC Local Monitoring and Control

SKA Square Kilometre Array

SKAO SKA Project Office Organisation

TANGO TAco Next Generation Object, a control system based on TACO

TM Telescope Manager

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 6 of 42

1 Introduction

The responsibility to design the SKA Telescope has been shared between Consortia. Each Consortium
has in charge to deliver the design of a specific element. Each element is responsible to provide
monitoring and control capabilities from low to high-level functionalities, except for Telescope
Manager which implements the higher level telescope functionalities and coordinate the activities of
the telescopes. The lack of coordination in the process of developing a consistent architecture has
produced a non-homogeneous implementation. In order to recover this situation and to push
implementation of monitoring and control system, a harmonisation process has been setup. During
a meeting held in Trieste in March 2015, it was decided that TANGO was the best-suited control
system framework for SKA purposes. About one year later, again in Trieste, a three day workshop
aimed to address three main areas: Provide Advance TANGO Best Practices Training Session, discuss
SKA Use Cases proposed by SKA LMC teams with recognised TANGO experts and draft a Strategy for
proficient use of TANGO for SKA. The outcome of this workshop and the future LMC peer-review
sessions, which are part of the harmonisation process described in the document with more details,
will be collected in this document, with the aim to bring out possible inconsistencies in the TANGO
implementation for SKA, by exploiting previous experiences in different application fields. Hence, the
outcome of the workshops would provide guidance for the community and collect implementation
solutions. Moreover, it shall provide hints of eventual aspects not covered by the current SKA LMC
vision. Under the perspective to participate in TANGO community, SKA could contribute to expand
the native TANGO features.

1.1 Purpose of the document

This document describes the effort taken by SKAO and Consortia address the activities around the
high-level architectural design and fill the gaps of information and coordination between elements
to agree on a common Control and Monitoring Framework. It describes also the process used to
start-up a collaborative community with the aim to exploit communalities in implementation. It
highlights the present identified gaps in the SKA monitor and control. This document shall be
regularly updated after each peer review meeting or when relevant number of issues will be
addressed.

1.2 Scope of the document

The document contents apply to Both MID and LOW Monitoring and Control system at any level of
the hierarchy.

1.3 Credits

Authors want to recognise the extremely and fundamental contribution of the SKA Local Monitoring
and Control System community as well as the SKAO Engineering Team, which provides input for this
document as well as the contribution of Andy Gotz (ESRF) and Lorenzo Pivetta (ELETTRA). They
provided, with their expertise, an invaluable insight and guidance in TANGO based control systems.
Authors also want to recognise the support of Riccardo Smareglia and his group in Trieste, which
kicked-off this activity and continuously support it.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 7 of 42

2 References

2.1 Applicable documents

The following documents are applicable to the extent stated herein. In the event of conflict between
the contents of the applicable documents and this document, the applicable documents shall take
precedence.

[AD1] SKA-TEL-SKO-0000002_02_SKA_Baseline_Design

2.2 Reference documents

The following documents are referenced in this document. In the event of conflict between the
contents of the referenced documents and this document, this document shall take precedence.

[RD1] LMC Tiger team, “LMC Middleware Evaluations SKA_CSP_MEMO_0010_middleware_contest
[RD2] LFAA LMC Middleware Infrastructure (DeMarco)
[RD3] LMC Standardisation Workshop Report, Trieste 2015
[RD4] LIG LMC Interface Guidelines Document
[RD5] SKA1 LMC Scope and responsibilities, RevA, SKA-TEL.TM-TMC-MEMO-001-A

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 8 of 42

3 Executive Summary

After a brief ex-cursus describing the facts and considerations that have driven the decision to use
TANGO as the common Control System Framework for SKA, this document collects the outcome of
harmonisation process. The First step of this process assembled LMC Developers and LMC Team
Leader in Trieste (16-18 Feb 2016). The aim of this meeting can be so summarised:

• Provide Advanced TANGO Best Practices Training Session
• Discuss SKA Use Cases with experts in Distributed Control systems, TANGO in particular
• Draft a Strategy for proficient and consistent use of TANGO across the SKA
• Give a general overview of the benefit about using a common infrastructure for SKA Local

Monitoring and Control system

The main outcomes of the workshop can be so described:

• The Advanced TANGO Training Session has been widely appreciated, and the need for
further training activities recognized. The TANGO ecosystem provides many tools that in
several cases already cover SKA needs, such as for example the SEQUENCER component.
Keeping in touch with TANGO experts is foreseen as essential.

• 20 SKA related Local Monitoring and Control use cases have been proposed by workshop
attendees which represent the SKA LMC architects and developers community. This means
that we had a good coverage of the control needs for the system. Only the INFRA consortia
were not represented.

• Use cases have been reviewed by widely recognized experts in Distributed Control systems,
in particular TANGO, which provided comments, solutions and hints regarding how correctly
implement them following the TANGO paradigm, and TANGO best-practices.

• The final discussion, very well attended, and with lively participation, provided a list of
proposals in order to progress the SKA Local Monitor and Control system.

In more detail, the participants agreed to the following points, related to the architecture and other
aspects of the control system:

• Given TANGO as the chosen Control System Framework, the TANGO paradigms MUST NOT

be violated; that is, control has to be implemented following TANGO patterns, and avoiding
TANGO anti-patterns.

• Best Practices of Control System design suggest new states MUST NOT be introduced, but if
truly necessary, they should be implemented in TANGO Kernel. However, states can have
additional metadata that can qualify the state.

• It has been discussed if it is reasonable having a single point of access of all nodes exposed to
TM from each element. That is, given the TANGO architecture, the high-level supervisor
would access top-level TANGO device servers, which will provide rolled-up attributes, and
commands for high-level coordination, but access to lower level devices can still be had for
debugging and drill-down purposes, but not for coordination.

• Naming convention and definitions —including the high-level control hierarchy— are
necessary and they have to be under configuration control.

• TANGO has been designed to be a control system, not to perform other types of software
operations like for example HPC.

• While TANGO is identified as a dominant control system, it does not exclude the possibility
to manage non-TANGO subsystems through interfaces to TANGO

• TANGO does not natively provide security features, as for example encryption. The best
practices on distributed control system suggest network has to be designed to take into

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 9 of 42

account this characteristic1. Moreover, usually in demanding processes, encryption reduces
performances and has to be taken into account. A comprehensive security policy would be
discussed.

• It has been suggested the creation of a common repository for the code developed for the
SKA. GIT or GITHUB were suggested. The repository must not be public, as even when it will
be hosting prototype information, the control hierarchy can be deduced from it, and could
help potential attacks. SKA configuration information or hostnames rather than IP
Addresses, have not to be hardcoded or available as properties.

• The need for a Tiger Team and a Control System Architect to implement the high-level
architecture has been recognised. Roles and responsibilities of those figures have been
discussed and proposed

• The suggested peer review process has been generally accepted, and recommendations for
improvement and making it more formal where given. Dates, Venue, and element under
review have been coarsely agreed.

• Some actions have been agreed in order to clarify the Control Architect and architecture
situation, establishing the Tiger Team and related high priority topics that this team has to
tackle, and to setup the logistics for the two following venues (Madrid and Edinburgh)

4 Tango Training and control system best practices

Advanced TANGO training has been provided in a day-long session that covered many different
aspects, from how to use kernel functionalities natively embedded in TANGO to the use of tools
designed for non TANGO-native, but connect, specific functionalities.

5 Use Cases discussion outcome

The workshop attendees submitted about 20 SKA LMC use cases, which are collected in Section 8.
These cases have been reviewed by widely recognized TANGO experts2, which provided direct
feedback during the meeting, and also provided the written feedback which can also be found
Section 8. Solutions have been provided regarding how to correctly implement those cases adhering
to the TANGO paradigm. Further considerations are elaborated in the following sections.

5.1 TANGO Paradigm

From the review of the Use Cases, a new interpretation of the LMC Interface Guidelines (LIG) started
to emerge, that did not force the TANGO paradigm. The benefits of a common bus and the limits
imposed by the unique interface between elements and TM have misunderstand the right approach
to the tango paradigm of using the native types and do not encapsulate structured information in a
one single self-descripting object. This introduces a risk for maintenance and scalability. By following
closely the TANGO-way, even if at the beginning it can be more difficult, but would lead to more
uniform code, easier to be maintained, updated, and improved, and with more compatibility with
the developments made by the TANGO community.

1 This point was discussed late in the meeting, and was not part of the original set of discussed elements.
Examples of design can include enabling tunnelling using SSH-keys, or allowing connections only between
particular device servers, instead of having all devices with access to the network.
2 Lorenzo Pivetta (ELETTRA) and Andy Gotz (ESRF).

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 10 of 42

5.2 TANGO States

The need to clarify the correct approach to provide new states in the TANGO State Machine
emerged. Best Practices for control systems suggest to REFRAIN from introducing new states, unless
strictly necessary. The current state machine states are a distillation of a large number of complex
states. The states indicated in the LIG must be analysed and aligned to TANGO states, and use the
additional state metadata to implement the LIG semantics.

5.3 Single Point of access between TM and Elements

It has been discussed if it is reasonable having a single point of access of all nodes exposed to TM
from each element, as stated in the LIG. The result of the discussion was that it was more
appropriate to have every element provide TM with the rolled-up status and high-level control of
the element (as appropriate), and shall allow TM to access status of individual devices (equipment,
software) at all levels of hierarchy (drill-down) when required (for diagnostics, troubleshooting, etc.).
In that way, the drill-down capabilities do not need to be coded, but would make use of native
TANGO tools and clients.

5.4 TANGO Scope

TANGO has been designed to be a control system, not to perform, for example, computations. For
those cases, a dedicated system should be designed to expose to TANGO what is necessary for
control purposes. While TANGO is identified as the dominant control system, it does not exclude the
possibility to manage subsystems just through interfaces to TANGO. However, those instances need
to be properly reviewed and authorised by the SKA Architect, as they need to be minimised.

5.5 Naming Convention

In order to harmonise the control practices, it is sensible to become a community of practice. As a
community, it is necessary to have a common vocabulary, agreed definitions, and naming
convention that go across telescopes, and that can be put under configuration control. In particular,
the naming and control hierarchy needs to be established. Such common agreements improve
dramatically the sustainability of the system in the long term, and make debugging easier.

5.6 Architecture Leadership

There was a strong perception from the growing community that a High Level Control System
Architect and common architecture is missing. From the analysis of the use cases, it was apparent to
the experts and to the attendants (particularly to SE) that, from the architectural point of view, there
wasn’t a common guidance for the development of the control subsystems.

5.7 Workflows

In order to manage sequences of commands and/or initialisations, enforce order of execution,
etcetera, the different groups made use of non-TANGO tools. It has been noted that in the TANGO
distribution a SEQUENCER Device already exists. Before introducing tools not part of the TANGO
ecosystem, it must be shown that alternatives do not exist.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 11 of 42

5.8 Logging and Historical Information:

The meant of “logging” it is sometime confused with “history of informations”. In TANGO these
have a well defined meaning and utilities to manage both in adequate manner. In some use cases
this different meaning is not so clear or explicit.

5.9 Security

Since TANGO have been developed to run in local self-contained systems, strong security features,
like encryption have not been implemented. However, usually in demanding processes, encryption
reduces performances and has to be taken into account. It has to be evaluated if is more effective
develop an encryption feature or identify which parts, in the distributed control system, could be
more exposed to attacks and look after them properly. A more extended discussion regarding
security Policies, rather than a security features, is necessary.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 12 of 42

6 LMC Harmonisation Process Description

The open discussion has identified three main aspects:

• Perception that both high-level control system architect and architecture is missed.
• Implementation issues.
• Need to keep momentum going on to proceed in the harmonisation

To resolve the first aspect, it have been suggested that, as action, SKAO should nominate or ask
support for a Control System architect. The architect function of SKA telescope even in the field of
Monitoring and Control will remain under the domain of SKAO. This architect shall have the
responsibility to draw and guide the high-level control architecture. It shall be recognised as an
outstanding experienced figure in TANGO control community.

The point of contact between the MC architect and consortia will be the ANT Team. Name ANT has
been suggested not as an acronym but related to the insect. It lives in extremely well organised
colonies. Strong and devoted to their roles, they work together to achieve a common goal. This
restricted team (about 6 people) represents the elements. ANT Team shall have a leader that
coordinates the activities. The team responsibilities are to provide to the architect all the
information he requests in order to design the architecture and to address specific issues identified
by the architect or as outcome of the peer review meetings. It also shall guarantee the presence of
consortia TANGO developer at the peer review meeting. During the Trieste meeting, first sets of
issues have been identified. These have to be addressed by the ANT Team and/or by the architect.

• Take responsibility to update LIG accordingly with the outcome of the workshop
• Naming convention and Definition
• Hierarchy levels
• Best practices
• State and modes
• “Standard” tools
• Survey of tools and practices
• Prioritization of activities
• Tango pattern for SKA
• Archiving logging alarm policy and GUI
• Security: Agreements, implementations, policies.

The community agreed that team have to be built soon. Team members and team lead have to be
identified and signed up by 31st March 2016.

In order to respond to the need of keeping the momentum and improve the ability to implement
Command and Monitor system under the TANGO framework, the proposed peer review scheme has
been discussed. Has been clarified that a peer review is not an Earn Value Milestone. The purpose of
the process is to:

 Share the implementation solutions

 Encourage reuse of implementation solution

 Same Problem == Same Solution

 Increase progress curve of less mature devices

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-2626

 UNRESTRICTED
Author: A. Cremonini

Page 13 of 42

 Absorb used implementation to fill gaps

 Compare different implementations and agree an optimal solution

 Use the power of the community in order to respect TANGO Paradigm

 Identify SKA essential needs for future contribute in developing

The proposed Peer Review Process is described in Figure 1 and it is provisional (Thanks H. Schnetler).
Since our review is a collective effort could only partially follow this scheme. The way it will be
conducted and the question that collectively have to addressed will be finalised later on. The
elements under review should provide document two weeks before the meeting, however design
team can decide to present the material at the review meeting. Consortia Element SE SHALL
nominates the most relevant participants under the consortia Domain. They shall review the
material and shall attend the peer review meetings. Dates and venue of the peer reviews are listed
in Table 1. Elements under review are still provisional. During the same meeting, ANT Team shall
address the assigned actions or agree how to address them.

Date Venue Element under reviewed

11-13/4/16 Madrid
(After CSP TIM#5)

MID.CSP.LMC
MID.DSH.LMC

4-6/7/16 Edinburgh
(After SPIE 2016)

LFAA LMC
SADT.NMGR

2-6/10/16 Stellenbosch
(During SKA Engineering Meeting)

LOW.TM.LMC
MID.TM.LMC
SAT.LMC
Harmonization status

jan/feb 2017 TBD SDP.LMC
AIV.LMC
INFRA.LMC

Table 1: Proposed Peer review Meeting dates and Venues

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 14 of 42

Figure 1: Conceptual Peer review process description (H. Schnetler)

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 15 of 42

7 Agreements, issues and actions

At the end of each workshop a list of agreement, issue, actions will be listed in order to monitor the
progress.

Table 2: Workshop Template for List of Agreement, Issues and Actions

Trieste Harmonization Workshop

Agreements

Has been agreed that a collective effort will improve the quality of design and development.

High Level architect and architecture is missed

A unique transport BUS could avoid the creation of unwanted constraints and unnecessary
interfaces

TANGO parading have not to be violated

Naming Convention and definition need to be addressed

General recognition that the presence of TANGO experts during the workshop was essential in
order to clarifies several crucial points

Attendant agree of the coordination role of SKAO in the harmonization process

Issues

The purpose of future meetings will not be actual peer review. The review process will be a
common effort to optimize development and design: difficulties to conduct the process

After 1 year of Choose of TANGO there are still a lot of gaps in implementation

Propose review schedule is aggressive: it has to be managed.

Actions Assignee Due Date

Establish ANT Team SKAO 31/3/2016

SKAO Discuss Internally MC architect issue SKAO 11/4/2016

Setup Indico page for Madrid and Edinburgh Peer review
meetings

SKAO 1/3/2016

Naming convention and definition ANT+architect

LIG review ANT+architect

Code Repository: were hosted and policy SKAO

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 16 of 42

8 Appendix A – Use Cases and Moderator comments

Use Case Title Best way to let TM access 'lower-level' parameters.

Proposer Dr. Carlo BAFFA, Dr. GIANI, Elisabetta

Description

The CSP–LMC, as the other LMCs, will have a layered structure. As a consequence, each level of our
layered structure maintains a 'summary' status of the physical conditions of lower level devices. But
we need to let higher levels, engineering interface, and TM to get detailed parameters values of
those lower devices.

We devised a flexible approach to this operation. We propose a new command: getLowerStatus.
When a device server receives such a command it sends the same command to lower level device
server with its argument, recursionLevel, decreased by one. If recursionLevel is already at zero, the
device server doesn't send such a request. After getting the response from lower level devices (or at
once, if recursionLevel is at zero), each device server builds a json1 object composed by all its
parameters and by the lower level device answers, and sends the resulting blob to the device
immediately above, via a Tango Pipe. To limit the amount of data exchanged, we can devise some
provision for 'data pruning' or direct device addressing, as, for instance, defining the start point of
command execution (e.g. the class which start the real execution of the command). Comments and
suggestions?

Moderators Comments

This means throwing away the hierarchical approach and the object oriented too. Introduces
additional issues to handle recursion, data size. The TANGO database of each LMC, which contains all
the device information, can be used as the single point of access to the LMC lower level devices
whenever a detailed information is needed.
Use the higher level devices to provide a summary of the lower level devices. Access the lower level
devices when you need the full information. Why use JSON on top of the TANGO Pipes? Pipes
transport a mixture of data types in binary. The same as JSON but more efficient.

Use Case Title Best way to set/report multiple parameters?

Proposer Dr. GIANI, Elisabetta, Dr. Carlo BAFFA

Description

There are important times when it is necessary to set or to read multiple parameters at the same
time. Notably during initialization, when each device driver needs to set up the zero-level safe
parameters values, or when TM configures the initial state of the system, or again at the start of a
new set of observations, when it is required a large change of state of the instrument. We propose
two commands getFullStatus and setFullStatus. The first command instructs the device server to build
a json object containing all its parameters and send the resulting blob to the device driver issuing the
command via a Tango Pipe. The setFullStatus accepts, as argument, a json object containing many
parameters and then executes a “Set Parameter” for each of them. Optionally this command can be
followed by the execution of a getFullStatus for confirmation. For more complex situation, we can
also devise a recursive setFullStatus, inserting the name of device class to witch a group of
parameters applies.

Comments on this proposal?

Moderators Comments

As above why use JSON on Pipes? This use case sounds like you need to manage a lot of settings. Why
not write a TANGO Device Class for doing this? It can be organised as a hiearchy of classes to control

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 17 of 42

a large number of devices. Settings could be stored in files or the database.

Example 12.1 – ESRF is developing a Settings device class for managing all settings in the accelerator.
The settings are stored in files. The Setting device manages a hierarchy of sub-devices for sending
Settings to lower levels. This scales to thousands of devices.

Example 12.1 – ELETTRA developed a dedicated application to restore multiple settings on the
accelerator. It's based on the context concept, which is basically a set of devices, which you can save
and retrieve values in a single pass. Moreover you can possibly restore the settings for the context
back in time, at any desired timestamp, retrieving data from the HDB++ historical archive. More
information here:
http://icalepcs.synchrotron.org.au/papers/wepgf152.pdf

Use Case Title How to effectively use TANGO in a hierarchical system.

Proposer Ms. Sonja VRCIC

Description

Central Signal Processor consists of three major sub-elements. The 4th sub-element, CSP.LMC (Local
Monitor and Control) has been introduced to implement a single point of communication with TM
and represent CSP as a single Element. Each of the three sub-elements (namely: Correlator and
Beamformer - CBF, Pulsar Search Engine - PSS, and Pulsar Timing Engine - PST) consists of a number
of LRUs/components and implements internal monitor and control. Each of the three sub-elements
(CBF, PSS and PST)implements a 'sub-element master' which communicates with LMC. At least two
sub-elements (CBF and PSS) intend to use TANGO for communication between the Sub-element
Master and other LRUs/components. The challenge: How to define TANGO devices / servers so that
the operations, via TM, can monitor and control CSP as a single entity, but when needed also at sub-
element level, and down to LRU and component. In other words, operations, via TM, when needed,
should have access to every parameter of every component.

Moderators Comments

Build a TANGO device server hierarchy, starting from low level devices. CSP.LMC TANGO device
server will then provide a short/effective summary of the underlying layers, e.g. TANGO device
server masters for CBF, PSS, PST which, in turn, provide a summary of the lower layers.
When any additional/specific parameter is needed the TM will get them connecting to the lower
layer TANGO device servers. The TANGO database for CSP.LMC can be seen as the single point of
access that allows a straightforward connection to the specific TANGO device servers.

TANGO is a hierarchical control system. This means the hierarchies are used to present a summary
of the lower layers. This is essential in a big system to control large systems. The lower layers are
directly accessible by any client (unless access control has been configured to prevent this).

TANGO anti-pattern – duplicate the information of the lower layers in the upper layers.

Example 2.1 – ESRF beam position measurement diagnostic systems consists of 250 lower level
sophisticated BPMs which are grouped together and controlled by a single high level device server
BpmLiberaAll. Refer to this paper on the ESRF BPM architecture:
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mopks014.pdf

Figure 4 : Example of architecture of a highlevel device controlling multiple devices i.e. ESRF BPM
system

http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mopks014.pdf

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 18 of 42

Example 2.2 – FERMI multiscreen controllers. Few dozens of fluorescent multi-screen controllers
are in use at FERMI. Each controller consists of actuators for target screen positioning, filter
positioning and a CCD for beam acquisition. Each controller is modeled as a TANGO device, with an
additional TANGO device in charge of the CCD. A master TANGO device allows for operating targets
definition and simple and effective monitoring of common information.

Use Case Title Initialization of multiple devices: use of Yat?

Proposer Dr. Carlo BAFFA

Description

During the initialization phase it is inconvenient to proceed over many devices in sequence. We
have seen Tango community devices sometime parallelizes tasks by means of the multi-threading
libraries Yat and Yat4tango. How can a yat thread signal to the main (calling) thread that something
has changed, for example the status of a monitored device? Is there a kind of “event handling”? Or
the main thread has to poll some attributes whose values are monitored by the yat threads?

Moderators Comments

YAT implements a messaging system in the DeviceTask you can use to send messages from task to
main thread.
See WritingSubsystemManagerDeviceServerWithYAT.pdf for a short introduction and refer to the
following links for YAT documentation:

http://www2.synchrotron-soleil.fr/controle/docs/yat/yat_html/index.html
http://www2.synchrotron-soleil.fr/controle/docs/yat4tango/yat4tango_html

For simple requirements also an omnithread based approach could be considered.

If the initialisation phase of a Device takes a long time (>500 ms) it should be delegated to a thread.
A standard thread library or Yat4Tango can be used. Same for monitoring. Might be an issue in
Python. PyTango implements gevent compliant asynchronism which can be used to delegate slow
actions. In the future gevent will be replaced by asynch (new feature in Python3).

Use Case Title Real-time updates for on-going observations.

Proposer Ms. Sonja VRCIC

Description

Telescope Manager (TM) shall provide to Central Signal Processor (CSP) regular updates for delay
tracking and beam-forming parameters (for all on-going observations/scans). Delay Models are
specified in a form of coefficients of a polynomial, number of coefficients per model and cadence
for the updates is still TBD; some estimates are provided in the CSP to TM ICDs (for mid it may be 3
coefficients per antenna per polarization every 10 seconds). Weights used in beam-forming and
Jones Matrices shall be provided by SDP, via TM (cadence TBD). Topic for discussion: Should these
parameters be delivered to CSP using the same method and approach as other configuration
parameters? In other words, should they be defined as parameters of the TANGO device?

Moderators Comments

Yes, Use TANGO attributes to implement values, which are need by (many) multiple clients. Use
TANGO events to update the clients efficiently. Either as ON_CHANGE or by pushing USER events.

http://www2.synchrotron-soleil.fr/controle/docs/yat4tango/yat4tango_html

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 19 of 42

Use Case Title LFAA LMC Overview Use-Case

Proposer Dr. Andrea DEMARCO

Description (and Comments)

Introduction
This section gives a brief list some of the features for an LMC system, and what kind of control the
system should provide to the TM interface layer for generic control of all elements. Primarily, LMC
will be concerned with some or all of the following, to different extents:

Monitoring and control of digital devices and any hardware/software components
The detection of any specified alarms/evens, to inform appropriate recipients
The running of computational/logical jobs/tasks with specified schedules
Routine checks and diagnostics
Exposing functionality in a logical fashion, or in detailed form for debugging and fault mitigation
Interaction with any operators/users
Routing, processing, saving of data streams etc.
Management of the available computational resources
For the purposes of the LFAA LMC, the above requirements could be serviced by various software
blocks as follows:

Monitoring/control of devices/hardware --> TANGO Server/Drivers + Hardware interfaces/Access
Layer
Alarms/Events --> TANGO Drivers + more generic core
Resource management --> Apache Mesos
Scheduled jobs --> Apache Aurora (on top of Mesos) and native services
Routine checks --> Applications running via Aurora
Exposing functonality --> LFAA Interface API
Interaction with users/operators --> TANGO wrapper over LFAA Interface API
Routing/processing/saving data --> GlusterFS logical volumes + low-level DAQ services + real-time
processing services

TANGO Device Control - TANGO States
All LFAA LMC requirements must fall within the Telescope Operating States, which are assigned
manually by the telescope operator, while the operating status can be set by the LMC or by TM. An
example of a typical state flow could be as follows:

The system starts in the “off” state, where all hardware/software is powered down. Once powered
up the state transitions to “standby”, the default operating status. A number of transitions are
possible (a) Debug/Maintenance: occurs when telescope is set to maintenance mode, (b) Low-
power: occurs when a command from TM sets the telescope to low-power mode, (c) Safe-state: an
optional state (similar to low-power), (d) Init: occurs when an observation schedule is received by
TM and the telescope needs to be initialized (forming stations, programming boards, setting up
workflows etc.), (e) Faulty: occurs in cases where a serious or critical error is detected.
“Debug”, “low-power” and “safe” states will remain in those states until TM instructs a change.
“Faulty” state can go to “standby” if the fault is mitigated/fixed, or to the “off” state.
Errors can occur in all operating states, so every state can transition to the “faulty” state.

All of this seems to be very specific to LFAA... how to generalize? Could a set be defined for all
LMCs?

It is apparent during our prototyping that Tango (v8/v9) does not allow for custom states to be

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 20 of 42

added to the set of states in the framework. There are some workarounds e.g. modifying the source
code to allow for more states, but this breaks Tango-related packages like Pogo (the device
designer). Tango 9 has introduced ENUM attributes, but one can't assign the Tango state machine
system to attributes out of the box.

In our current prototyping, we provide a design pattern to write a new state system within a Tango
device driver that can replicate the same functionality for Tango states, but with any list of custom
states.

When would the State transition check happen? Is some extra code in each method foreseen?

The Python TANGO driver will include:

A dictionary called state_list, which contains a list of key/value pairs, the key is the driver function
name, and the value is a list of states (represented by a numeric value) of allowed states under
which that function is runnable.
An inbuilt function called “check_state_flow” which, given a function name, checks if the current
state of the device is in one of the allowed states. This function returns True/False accordingly.
Furthermore, with this re-implementation that mirrors the Tango state-flow control, the predefined
Tango state/status information is redundant, though it could still be used for some specific cases if
needed. We anticipate replacing the “numeric” value in “state_list”, with an ENUM value.

TANGO states should be always implemented. If you need sub-states then your proposal is OK.
See comment for use case 3 above.
Till the problem on how to guarantee a consistent management of all the sub-states apply.

TANGO Device Control - TANGO Device Hierarchy
In LFAA, a number of antennas are connected to a single tile (via a Tile Processing Module, or TPM).
Based on the Telescope Model information, tiles are configure into logical stations, and some of the
operations will be transmitted to stations rather than to individual TPMs.

We can define a TANGO station with the following non-exhaustive capabilities:

Add/Remove TPM to/from Station
Connect/Disconnect TPM in a Station
Set/Get station state (which is an aggregate of TPM states)
Run station command - a command across all TPMs in the Station, and return all results for each
TPM
This hierarchy is therefore very straightforward. We shall simply go over the implementation model
to send commands to all TPMs within a station, waiting and gathering all results. A number of
criteria must be catered for:

The command to be executed must exist on all connected devices.
Each TPM must be in a state where the command in question can be run.
Arguments for the command have to be passed in to the various TPMs.
It is trivial to check if the command exists on all TPMs. In order to pass in parameters to the various
TPMs, a pickled list of dictionaries can be utilized. If the list contains only one dictionary, then the
same parameters are applied to all TPMs. If there is more than one item in the list, then the number
of items in the list must be equal to the number of TPMs in the station.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 21 of 42

Why should a command not exist in a TPM? Are TPM different? A common interface would be
mandatory...

When passing a command to all TPMs, the Station device maintains an index, called
“command_indexes”. Each command per TPM is run asynchronously in TANGO via the
“command_inout_asynch” TANGO call. This returns a command ID which can be polled for
completion, and we store this in “command_indexes”.

A while-loop is then able to use the command IDs stored to poll for a result from each individual
TPM by utilising the “command_inout_reply” TANGO call, which by default returns an exception
when polling a command that has not yet returned. Once all results are accounted for, stored in an
array, the Station call can return these replies.

A good pattern to use for this are the grouped commands. Create a group of the stations to be
controlled and then send/receive replies from them using a single group call. The group call use
the asynchronous call to trigger all devices in the group. This way the reading of all devices is only
limited by the slowest device to reply and not the sum of all the replies. Check out the
documentation on Groups: in the TANGO manual
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node5.html#SECTION0
0570000000000000000

TANGO Parameter Limitations
Commands in TANGO can, at most, pass in/out a single parameter. The easiest way to circumvent
this issue when multiple parameters are required is to use a string representation of a set of
key/value pairs. In the case of pyTango, this can be easily achieved by using a pickled representation
(giving a string) of a dictionary. For example, from within the TANGO driver, one can “un-pickle” the
argin input argument as follows:

self.debug_stream("Unpacking arguments...")
arguments = pickle.loads(argin)
commandName = arguments['commandName']
inDesc = arguments['inDesc']
outDesc = arguments['outDesc']
allowedStates = arguments['states']

In fact TANGO commands also support arrays of homogeneous TANGO types, so multiple
parameters can possibly fit into an array.
Another possibility for multi-parameters is to use the pipes in TANGO V9. PyTango has also
implemented a TANGO Object which sends/receives multiple parameters to and from TANGO
devices. It uses pickle to do over the DevEncoded interface. But in the future it will use Pipes.
More information about PyTango Objects in this presentation:
http://www.eli-alps.hu/sites/default/files/tangows/20150224-1200-ESRF-Building-
TiagoCoutinho.pdf
In any case, whenever very different type of parameters are needed, consider implementing
multiple commands.

TANGO Parameter Limitations - Other Devices
The LFAA LMC will require the control of other devices such as Switches, PDUs. TANGO drivers for
these devices will also be written in a similar fashion to those for TPMs, with a state-handling

http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node5.html#SECTION00570000000000000000
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node5.html#SECTION00570000000000000000
http://www.eli-alps.hu/sites/default/files/tangows/20150224-1200-ESRF-Building-TiagoCoutinho.pdf
http://www.eli-alps.hu/sites/default/files/tangows/20150224-1200-ESRF-Building-TiagoCoutinho.pdf

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 22 of 42

mechanism as described.

Some TANGO device servers already exist for these devices.

Moving Upwards
The LFAA LMC use-case requires that additional components aside from a TANGO-based control
system to be available. In the architecture currently being developed, some of these components
are Apache Mesos, Apache Aurora and GlusterFS. We give a brief overview of each.

Moving Upwards - Apache Stack for Resource/Workflow Management
The LFAA will require a set of nodes, the “Monitoring, Control and Calibration Servers”, which is a
compute cluster. On this MCCS cluster a number of applications and services will be run (including
the TANGO service). Cluster management technologies can be employed to manage the resources
of each node as well as submit applications and services as jobs. Traditionally, the resources of a
cluster are handled separately for each node, such that the job submission system as well as the
administrators need to know how the cluster is configured. An abstraction over this is to aggregate
all the available resources as a single entity, such that the entire cluster is viewed as a single large
node. These tools implement a level of abstraction on top of operating systems, and can be viewed
as a cluster operating system. Apache Mesos is such a tool, a cluster manager on which frameworks
can run. These frameworks provide the scheduling and executing logic required to launch jobs and
workflows. In this respect, Apache Aurora is being considered. Additionally, large clusters require a
level of redundancy and reliability, especially when master nodes fail. Apache ZooKeeper can
provide this functionality.

The mix of technologies chosen here may seem daunting. In fact, each block included requires
separate configuration and setting up. It is good to minimize the amount of “moving parts” in a
design. The stack chosen here can adequately handle the LMC requirements for LFAA. This is not
the first design that was considered for LFAA. Earlier designs and test modules included some
more/different components that were eventually taken out and or replaced by better packages. The
choice was based on some general and some very specific criteria. The products are all open source.
They are tailor made to handle the tasks required of them in an LMC setting. They have dedicated
teams actively developing the products and fixing bugs/adding features. The TANGO control system
was analyzed earlier on for its utility in LMC and was found to be very suitable to device-only
control and very scalable for that specific purposes. On the other hand, packages like Apache
Mesos, Apache Aurora, GlusterFS etc. are already deployed in very large systems and guarantee
scalability and industry standards for their specific purpose as well.

The various units of this Apache stack provide an API/command line tools that can used to run,
monitor and control the stack. We anticipate that the required functionality will be wrapped as part
of the entire LFAA LMC API. But we do not anticipate that this will be done via a TANGO driver. The
reasons are that most of the interaction with some of these units are based on their own UI (for
internal use) or through scripts. TANGO does not follow the scripting model, since it is basically a
reply-request mechanism meant for simple commands to devices.

It is true that other softwares like Apache Mesos and other messaging systems are better suited
for these tasks than TANGO. However careful thought must be given to how much of these
systems needs to be archived, logged and monitored together with the TANGO control system. If
you need to correlate information from the multiple systems then it is strongly recommended to
build a bridge to the sub-system via device servers and then use the TANGO archiving system to
store information from both systems.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 23 of 42

TANGO anti-pattern – build multiple systems to control, monitor and archive information in a
large control system

Example 5.1 – ESRF uses Apache Camel to ingest metadata from TANGO devices into a metadata
catalogue. The Camel workflow sends status information back to the TANGO device about the
ingestion. This way all status information is visible from one control system.

Moving Upwards - Logical Volumes
GlusterFS is an open source, distributed file system capable of scaling to several exabytes and
handling thousands of clients. GlusterFS clusters together storage building blocks over Infiniband
RDMA or TCP/IP interconnect, aggregating disk and memory resources and managing data in a
single global namespace. It is based on a stackable user space design and can deliver exceptional
performance for diverse workloads. Most existing cluster file systems are not mature enough for
the enterprise market. They are too complex to deploy and maintain, although they are extremely
scalable and cheap since they can be entirely built out of commodity OS and hardware. GlusterFS
solves this problem, by offering stability and low-maintenance setup for some speed trade-offs.
GlusterFS is an easy to use clustered file system that meets enterprise-level requirements:

GlusterFS can be deployed with the help of commodity hardware servers.
No metadata server is required.
Any number of servers can access a storage that can be scaled up to several exabytes.
Aggregates on top of existing file systems. A user can recover the files and folders even without
GlusterFS.
GlusterFS has no single point of failure. It is completely distributed, thanks to not having a
centralized meta-data server like Lustre.
It is not tightly coupled with the OS kernel (like Lustre) and therefore any updates to the system as a
whole have no effect on GlusterFS.
As a software component of the LFAA LMC system, GlusterFS will manage one logical cluster wide
partition to store raw data files and logs. Each node will have a dedicated partition which will make
up part of this logical volume. GlusterFS will automatically:

Handle failures in case of drive or node failure
Use the fastest available cluster interconnect (in this case, 40GbE network) to transfer data
between nodes
Recover lost data (depending on the type of volume deployed)
The raw data files will use a custom defined file format, which typically takes the form of an HDF5
format. A directory structure within the logical format will be used to organize data generated by
the data acquisition application and logs. All application access to the distributed file system will
occur through appropriate calls in the API.

Moving Upwards - Functional Applications
Functional applications refer to processes and application which are not related to monitoring and
control, but are required for the correct execution of an observation schedule. These include
calibration, pointing, diagnostic routines, and data acquisition. They are referred to as ‘functional
applications’ since they are not part of the software infrastructure, but rather use it to execute
upon. They will generally be executed by running a workflow submitted to the workflow manager.
These applications need to specify how much resources they require to run, and whether they’ll be
run as services or one-off. Depending on the availability of these resources, as managed by the
resource manager, they will be scheduled to run on the cluster.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 24 of 42

A non-exhaustive list of possible functional applications is as follows:

Data Acquisition – streaming control data from the TPI to the MCCS cluster, to be processed and
stored in HDF5 files.
Pointing – beamforming coefficients are calculated every few seconds by the pointing algorithm.
The coefficients are downloaded to each TPM (via the TANGO control system).
Calibration – Antenna signals need routine calibration.
Diagnostics – Integrity checks are performed routinely, to make sure antennas, signal path,
firmwares are running within acceptable parameters. Some of the information required by the
diagnostic routines can be requested via the TANGO control system.

TM-LFAA LMC Interface
As one can guess, a “core component” is required to manage all the LMC subcomponents
themselves, as well as expose the available functionality to external users. The primary user of the
LMC is TM. The interface between these two entities is defined in the TM-LFAA ICD. This document
only lists a number of high-level requirements which this interface should meet, with no reference
to technology preferences (for example, REST, RPC, SOAP). Nevertheless, the interfacing protocol
should be unaware of any technology choices adopted within the LMC. It should also be
architecturally agnostic, meaning that whatever the underlying architecture of the LMC is, it should
be able to satisfy the interface requirements through a standardised API. To accomplish this task,
the interface on the LMC side should “flatten-out” the functions provided by all system components
and provide an API which is de-coupled from the underlying deployment.

This basically contradicts the hierarchical approach. Hierarchies are in place in order to simplify
large systems management; in this perspective higher layers just need a summary of lower layers
in day by day operation. Whenever detailed information is required, anyway, high layer devices
and/or clients could/should relay to the TANGO database of each LMC subsystem as the single
point of access.

Broadly, we can list the generic aims of the API as follows:

Implement the TM-LFAA interface
Manage the telescope configuration
Report errors/alarms through an appropriate notificaton system
Manage role-based priviliges and audits
Monitor and control the diverse set of underlying components (TANGO-based or not)
Logging
One realises quickly that there needs to be a way to amalgamate in an effective way, the method by
which each different component is managed and communicated with.

Well, most of these requirements are already available in TANGO.

TM-LFAA LMC Interface - Components and Capabilities
LFAA LMC extends the concept of components and capabilities defined in the TM-LFAA ICD to
include any internal hardware, software and logical entities. The primary components type defined
in the system are:

Hardware (racks, servers, switches, PDUs, …)
Software (logger, core, device controller, file manager, cluster manager, …)

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 25 of 42

Tiles (and stations)
Workflows (observation modes and related jobs)
Running tasks (beamformer, calibrator, DAQ, …)
The list of components present in the systems is updated dynamically during the execution lifetime
of the LMC. For example, when a new job is launched, it is represented as a new component which
exposes a new list of capabilities which can be queried and/or called. Capabilities can be
categorized into four types:

Properties which represent values that can be set or retrieved (for example “state”, which is
available for all components). Several property types are defined, such as metrics, registers, values.
Commands re functions defined in the component which can be called. A command may require a
number of arguments, and can return several results. Typical commands include initialise,
check_status and configure.
Events generated by a component can be used to notify other components of changes. Components
may register to receive events from specific components types or instances, and when the event is
fired, it will be forwarded to all components registered to receive it. Several event types can be
defined, for example “Component configured” and “Component status changed”
Data epresents output data generated by a component which can be accessed or viewed by other
components. This can be used, for example, to access raw antenna data generated by a data
acquisition process
Additionally, alarms can be set on any property. A permissible value range can be set, and if the
property’s value exceeds this range, the component itself is set in alarm state. Alternatively, an
alarm value can be specified on the property, and if the current property value matches the alarm
value, then it is set in alarm state. The latter behaviour can be used to automatically set a
component in alarm state when its internal state matches a particular value.

All the above is already available in TANGO

Unifying Communication
The LFAA LMC core is built as a hierarchy of components, with the core itself being represented as
the root of the component tree. The state of each component is an aggregate of the internal states
of the underlying components. Communications between components are handled by a
communication channels network with a central broker. Messages are sent to the broker which
forwards them to any interested components. For example, if component A wants to read a
property value from component B, it will send a request message to the broker specifying
component B as the destination. The broker will decide on which channels the message will travel
through and the message will eventually arrive at its destination. The same procedure is performed
to send the reply from B to A. The communication system is currently based on RabbitMQ, with
message formatted using JSON.

When a new component is introduced to the system (for example, during system startup) it exposes
all the capabilities which can be used by other components. A software component interface is
plugged into the core which is capable of communicating with this instance. The core communicates
with this interface, which in turn forwards the JSON-formatted request to the component. For
example, if the device controller needs to be initialised, the following steps are performed (all
communication between the core and interface are direct function calls, whilst communication
between the interface and the component instance happens through JSON-formatted messages
over RabbitMQ on a dedicated channel):

The core loads the device controller component interface

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 26 of 42

The core calls the component initialise method
The interface starts the device controller component (depending on which controller the core is
configured to use, for example, the TANGO server or custom scripts). The controller can be started
on the same server or another server (say, by using the job scheduling interface).
Once the device controller is initialised it will send a notification to the interface
When the core receives this notification (through the interface), it will call the configure method
(configure and initialise are different processes, since a component’s configuration can change
during its lifetime, however it does not need to be initialised each time)
After configuration, the core will call the get_component_capability method on the interface. This
will send the JSON-formatted request to the component instance, which will generate a list of
internal components, each having their own capabilities. This list is sent as a reply to the core,
which places this list in the database so that other components and external entities (such as TM)
can query it through the core’s API.
Notes on the above: - The list of components (and associated interfaces) which the core should load
will be provided through a configuration file - The list of hardware devices which the core should
monitor and control (through the device controller) will be provided through a configuration file -
All components have a pre-defined set of capabilities, which they inherit through the generic
component interface (for example, the state property and the initialise, configure and
get_component_capability commands). Upon initialisation and configuration, the component can
expose any other internal components and capabilities is desires.

The LMC core uses a NoSQL database (MongoDB) for internal housekeeping, such as: - Keeping
track of loaded components and their capabilities - Storing (and possibly updating) a local copy of
the Telescope Model - Keeping track of which components are registered to which events - Keeping
track of alarms - Temporarily queue events and command runs which need to be forwarded to
external parties such as TM

The component system described above sounds like it fulfills a very similar role to the TANGO
control system. Extreme care should be taken about re-inventing the wheel and all the related
protocols and generic tools. Avoid having a second network protocol to develop and maintain.
The question should be asked if TANGO can fulfill this functionality or not. If it can it will simplify
the access for all clients in the system and provide a unified system. Easier to manage and
maintain and to which clients can connect to via one protocol. If TANGO cannot do the job or
requires lots of extra development and if this is a top level application i.e. not a middleware, then
it might be necessary to develop a new solution.

Example n.1 – The new ESRF beamline control sequencer which is being developed is written in
Python and uses Redis to store acquisition data in memory. It generates data files in HDF5. It
talks to TANGO devices to control, trigger and monitor the data acquisition. Any clients that need
to talk to the control sequencer should use a TANGO bridge. The goal is not to develop a new
middleware even if the temptation is there.

TANGO anti-pattern – develop or use two or more protocols as middleware in your control
system.

Unifying Communication - Interfacing with LMC
The dynamicity of the core must be reflected in the interfacing layer, which exposes all the available
functionality to third party clients, most notable of which is Telescope Manager. It is known that
each LMC element will communicate with TM via a Tango interface. Beneath this Tango interface
will reside a RESTful API. The list of possible URLs is generated dynamically when the core is started

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 27 of 42

and throughout its lifetime, depending on the entries in the database. The URLs are designed in
such a way as to make it easy to drill down, or filter, components and capabilities by specifying IDs,
types and other filtering options.

REST stands for Representational State Transfer. It relies on a stateless, client-server, cacheable
communication protocol (primarily HTTP). It is an architecture style for designing network
applications. The primary aim is that instead of using complex mechanisms such as CORBA, RPC or
SOAP to connect between machines, simple HTTP is used to make calls instead. RESTful applications
use HTTP requests to post data (create and/or update) read data (for example, to make queries)
and delete data. Thus, REST uses HTTP for all four CRUD (Create/Read/Update/Write) operations.
These operations are performed through the following HTTP requests:

GET – Query an entity for information or data
POST – Issue a command which changes the state of an entity (for example, to create an
observation or write a property value)
PATCH – Update the state of a created entity (for example, to stop an observation)
DELETE – Delete an entity (for example, unsubscribe from receiving an event, which will delete the
appropriate entry)
Notes: - The API allows for multiple observations to be running concurrently, however currently the
design of the core can only support one. When the core is extended, the API does not need to
change. - A single component instance can be specified by its component type, component name
and component ID. For example Switch 5 would have component type “hardware”, component
name “switch” and ID “5”. - The client can subscribe to any event being exposed by the core and
internal components. When an event is generated it will be placed in a queue for a specified time
window. The client can poll for generated events using the URL above. Filtering on event type and
even source is also possible. - Transient entities like observations, command runs and events are
only available for a specified time window after they are completed, after which they will be purged
from the database. This timeout will be referred to as the PostTimeout. - All API calls returning
more than a pre-defined number of items will be paginated so that there is not risk of hogging the
core (and client) if a request generated a large reply. The reply will include a URL which points to
the next result collection.

Some usage examples:

Check component state, check the current state of all tiles:

GET /components/tile/properties/state
Check the current state of tile 10:

GET /components/tile/10/properties/state
Check the state of the beamforming job:

GET /components/beamformer/properties/state
Check the temperate of all tiles in station 2:

GET /components/station/2/properties/temperature
Create an alarm which provides a maximum value for tile temperature (all tiles)

POST /components/tiles/alarms
POST will contains the property on which to set the alarm (in this case temperature) and the

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 28 of 42

maximum value (JSON form).

All events and alarms alert are reported on /events. To get all alarm triggered from tiles, the
following request can be used:

GET /events/alarm_triggered?source_type=tiles
To get all events for tiles:

GET /events?source_type=tiles
An observation is defined by a telescope model. The external user must generate a valid model
which can then be sent to the LMC by using:

POST /observations
POST contains the telescope model, including any software and firmware binaries which would be
required. The reply will include an observation ID, which can then be used to start the observation.
If an ID of 1 is received, the following can be used to start the observation:

PATCH /observations/1/run
PATCH includes the command to start the observation. A GET request to this URL will return
information relating to the current status of the observation.

Unifying Communication - TANGO Wrapper
Given that the LMC has to interact with TM via Tango, the RESTful API has to be wrapped in a
TANGO device. The TANGO community is already proposing ways for the TANGO ecosystem to
include a RESTful API in future releases. So the wrapper has to be custom-developed for the time
being. We currently have defined an API for LFAA, but we feel that there are ways to have this
formalised across many LMCs if required. The real work is in mapping the REST API do the different
sub-elements, including, but not limited to Tango. This requirement is taken care of by the LMC
Core element. To follow the current devlopment on REST APIs for Tango, go to: link

The TANGO REST-api is available and it is strongly recommended to use it. But it's main use is for
interfacing web clients and not for defining a new protocol for TANGO. REST is http based with
data transferred in ascii and therefore not very efficient. It is not object oriented and therefore it
is not a good idea to use the TANGO REST-api as the main communication between clients and
the control system. Website for TANGO REST-api:
https://bitbucket.org/hzgwpn/mtango/wiki/Home

TANGO anti-pattern – use the TANGO REST-api as the main way to communicate between clients
and the TANGO devices.

As the result of the LMC Standardization workshop not just the TM was supposed to adopt and
use TANGO. In that perspective all the complexity behind this wrapping can be avoided just
allowing the TM and the LMCs to natively “speak” TANGO.

Summary
This use case is a description of the current prototype of our development effort for LFAA LMC. The
use case is based on our use of Tango, as well as other software packages that are involved in the
LMC infrastructure. Primarily, we discuss the following:

https://bitbucket.org/hzgwpn/mtango/wiki/Home

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 29 of 42

Monitoring and control of digital devices and any hardware components
The detection of any specified alarms/events, to inform appropriate recipients
The running of computational/logical jobs/tasks with specified schedules
Routine checks and diagnostics
Exposing functionality in a logical fashion, or in detailed form for debugging and fault mitigation
Interaction with any operators/users
Routing, processing, saving of data streams etc.
Management of the available computational resources
This use case will focus on the use of TANGO within the LFAA LMC architecture, and then move
outwards to show how TANGO fits within LFAA LMC, to satisfy the LMC features above.

Use Case Title LMC-TM Interface

Proposer Dr. Simone RIGGI

Description

The Telescope Manager monitors and controls SKA Elements through the interface with their LMCs.
Within LMC we made these assumptions:

1) Interface realization: The interface is realized by a unique instance of a TANGO device running in
the LMC control domain. The interface device contains all the Dish monitoring attributes for TM
subscription and commands callable by TM (following the TM-DSH.LMC ICD), plus pipes for defining
events/alarms. TM directly communicates only with the interface device not with internal LMC
TANGO components. Is this assumption correct? 2) Static vs Dynamic Interface: Is the interface
supposed to dynamically change at real-time with respect to the ICD specification (stored in the Self
Description Data)? In other words, is LMC requested to support creation/removal of monitoring
points and/or commands at run-time by TM? This seems the case from the TANGO LIG, but the
exact mechanism and physical use cases justifying this for the Dish are unclear at the moment. For
instance, for internal interface definition, Dish sub-elements (SPF, Rx) suggested a static interface.
As an exercise, we were able to dynamically generate monitoring points at run-time (and also
subscribing and actually monitoring them) on the basis of a parsed SSD config (i.e. an XML modified
config file with respect to the provided SSD template) but how to generate commands and their
actual behavior (=code to execute actions)?

Moderators Comments

1) A clean, hyerarchical design should only expose the necessary parameters, meaning a summary
of the DSH.LMC, in the highest level interface. The TANGO database for DSH.LMC can be
seen as the single point of contact between TM and DSH.LMC. Whenever a deeper level of
detail is needed TM contacts the DSH.LMC TANGO database (i.e. the DSH.LMC TANGO
domain) in order to connect to the relevant TANGO device server.

2) This is mainly matter of discussion for the consortia. Anyhow, how could the ICD change with
respect to the real available resources (hardware)?

TANGO Pipes should only be used for sending complex data. Attributes are preferred because they
are simpler to implement, configure and monitor. Use Device Attributes as much as possible for
exchanging data.

TANGO anti-pattern – using Pipes when Attributes could be used.

TANGO supports dynamic creation of Attributes and Commands (since V9). However in an object
oriented design every object belongs to a class which implements the same class behaviour and

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 30 of 42

interface for all objects of that class. It is not good OO practice to have the objects of the same class
with different interfaces and behaviour unless this is really an integral of the behaviour of devices of
that class e.g. an RGA. Even if this is possible with dynamic commands and attributes it should be
avoided. Use dynamic commands and attributes to define the same interface and behaviour for all
objects of that class. If you need different interfaces for objects of the same classes consider
implementing multiple classes.

Example 10.1 – ESRF uses dynamic attributes to implement the elements detected and read by each
residual gas analyser (RGA) at startup time.
Example 10.2 – FERMI uses dynamic attributes to map a large number of hardware registers on low
lever radio frequency (LLRF) sybsystems.

TANGO anti-pattern – use dynamic commands and attributes to implement different class
behaviour for different objects of the same class when different classes could be used.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 31 of 42

Use Case Title Receive health and monitoring information

Proposer Ms. Shagita GOUNDEN

Description

SDP LMC will send health and monitoring information to TM.

Moderators Comments

Study and choose the TANGO communication mechanism best suited to your needs i.e.
synchronous, asynchronous, events. Events should be used for fast communication with large
numbers of clients. Check out this tutorial:
http://ftp.esrf.fr/pub/cs/tango/conferences/pcapac2014/tango_communication.pdf

Use Case Title Request an observation

Proposer Ms. Shagita GOUNDEN

Description

TM sends through requests for observations/capabilities to the SDP via the SDP LMC. The SDP LMC
then queries the SDP internally to determine the availability of resources to perform the
observation and responds to TM.

Moderators Comments

Use TANGO device servers to model the SDP and send commands or set/read attributes.

Use Case Title Telescope State Information

Proposer Ms. Shagita GOUNDEN

Description

TM send telescope state information/metadata to the SDP LMC. Are we closer to knowing what the
specifics of this data set are i.e. data type, values, cadence, etc.? TANGO will send this data using
TANGO.

Moderators Comments

This is not clear. Why should TM send state information to the lower layers?
Anyway, define the data which need to be sent and implement them using TANGO Device
Attributes.

http://ftp.esrf.fr/pub/cs/tango/conferences/pcapac2014/tango_communication.pdf

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 32 of 42

Use Case Title SKA Distributed Tango Facilities Use Case

Proposer Mrs. Lize VAN DEN HEEVER

Description

After attending the Tango workshop at ICALEPCS in October 2015 and some discussions at the
conference a very early suggestion for using distributed Tango control systems for the SKA project
where described (with very little hands-on experience with Tango at the time).This is in Appendix A.

Below is a conceptual description of the use case for distributed Tango facilities for the SKA project.
The SKA-Mid telescope is being used as example for this use case.

Use case description

For this use case, let's assume the SKA-Mid consists of the following functional Elements: TM
(Telescope Manager) - central monitoring and control system SDP (Science Data Processor) - science
data processor CSP (Central Signal Processor) - correlator, beam former, pulsar timing engine, pulsar
search engine DISHes (1 to N, N ±200 for SKA Phase 1, ±3000 for SKA Phase 2)

TM is the central monitoring and control system for the SKA-Mid telescope and orchestrates the
other Elements into a working telescope. Each of the Elements is expected to implement an LMC
(Local Monitoring and Control) Tango device server providing a standardised monitoring and control
interface to TM.

Each of the Elements, including each Dish, has to operate as a stand-alone entity (in terms of
starting up, restarting, deployment, upgrading, etc.) and will themselves most probably be a Tango
facility with its own Tango host and hierarchy of sub-elements, applications, components and
devices.

All these distributed Tango facilities then need to be coordinated by TM into a central SKA-Mid
Tango facility. TM implements Leaf nodes (Tango Clients) that connect to each of the Element LMCs
at the bottom of the TM hierarchy (and the Element LMC typically being at the top of the hierarchy
of the Element's Tango facility). A question here would be if there are any aspects of Tango
architecture or known limitations that will impact the decision on whether to have a separate
standalone TM Tango facility in addition to SKA-Mid Tango facility, vs combining these into a single
central SKA-Mid Tango facility only with no TM Tango facility.

Remote logging from the distributed Tango facilities is another related use case. The roles and
responsibilities specified for the LMC includes support for remote logging. A possible approach to
this would be that each Element implements an Element Log Consumer Tango device to provide
localised logging for that Tango facility, gathered and stored at the Element. And that the LMC
Tango device of the element collaborates with the Element Log Consumer to distribute the logs
from a selected component and level (as commanded via the Element LMC interface) to TM via a
remote log message on the Element LMC interface.

Moderator Comments

Having separate TM TANGO facility and SKA-Mid TANGO facility allows for the largest flexibility.
Also, very small changes should, in principle, be requested to TM TANGO facility when moving to
SKA-Phase2.
Concerning the logging it is not clear if the requested feature deals about message logging or
engineering data archiving. For both the requirements, anyhow, TANGO device servers exist.
Engineering data archiving can be done with the HDB++ archiving system; in order to guarantee a

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 33 of 42

complete standalone operation a dedicated HDB++ archiving system for each LMC TANGO facility is
foreseen.
Also, for logging purposes, in addition to the file target and the LogConsumer application, a
dedicated TANGO device server exist which allows for remote logging on file (or database).
FERMI adopts a multiple TANGO domain approach, mainly because of cleanliness of design than
performance. A TANGO domain is dedicated to the accelerator, an additional one to the optical
sampling subsystem and one to each of the experimental stations.
Each TANGO domain is standalone and can operate without the others. Running the accelerator,
however, requires that all the TANGO domains are up and running.

The definition of what constitutes a TANGO system depends on the logical and physical separation
required and the size of the system. Systems which need to be logically separate i.e. need to
independent of the other systems in terms of management and life cycle, should have their own
TANGO database. Communication between TANGO systems is transparent using the fully qualified
name. Inter-TANGO control system is supported for all tools including the archiving. This means it is
possible to have multiple TANGO control systems archived in the same HDB++ database. Having one
big system is possible but it means any failure on the database impacts all sub-systems. The way
around this is to have multiple Database device servers pointing to the same mysql database which
act as fallback systems. The same approach can be used to distribute the load across multiple
databases. MySql can be used to implement redundancy and automatic switchover to avoid failure.
One drawback of having only one TANGO control system is the load on the database. Until recently
this was an issue for storing set_values in the database. This has been fixed by not storing a history
for set_values. But you still need to be careful if many devices are storing set_values with a high
frequency in the static database. If different life cycles for the different sub-systems or necessary or
possible then the rule of thumb is that they have their own TANGO database. We should discuss the
exact size and role of each system to give more detailed advice.

The TANGO Logging system is efficient and should be used. Logging can be extended to have more
sophisticated tools for analysing logs. One idea is to use an existing logging manager like Apache
Kafka for aggregating and analysing logs and interfacing it to the TANGO logging.

Example 18.1 – ESRF has 42+ TANGO control systems. The largest one is for the accelerator
complex. It has one MySQL database with two TANGO Database device servers serving devices. All
clients and servers connect to the same one (orion:10000) and will automatically switch to the
second one (orion:11000) if the first one fails. The size of this system is roughly 200 hosts, 3000
servers and 17000 devices. Backup of the database is done by replicating the TANGO database in a
separate slave database (using mysql technology) and then backing up the readonly replicated
database. This guarantees that the main database is never blocked during backup. The database
size returned by the command DbInfo:

TANGO Database sys/database/2

Running since 2016-01-18 09:01:08

Devices defined = 17019
Devices exported = 15422
Device servers defined = 2956
Device servers exported = 2422

Device properties defined = 319947 [History lgth = 1980406]

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 34 of 42

Class properties defined = 3811 [History lgth = 33186]
Device attribute properties defined = 104563 [History lgth =
361724]
Class attribute properties defined = 76 [History lgth = 522]
Object properties defined = 1048 [History lgth = 5596]

The number of calls and average time to execute (in ms) of the Database device server for the ESRF
accelerator are displayed in the table below.

Table : ESRF accelerator database statistics for one month

The limitation on the size of a TANGO database has not really been measured. There could be a
limitation if the number of devices, servers and clients were an order of magnitude bigger than the
ESRF one (20000+ devices). The limitation will depend on the hardware (cpu+disk) where the
MySQL database is running, the network and the number of requests per second e.g. if many set
values are being recorded at a high frequency or many imports are being done at a high frequency.
The way to measure the limit would be to monitor the number of requests served by the Database
device server, the performance of the host + database. Any flattening out of performance would be
an indication of a bottleneck. If it is on the host then try to increase the hardware the database is
running on. It is best to run the database server and database on a dedicated machine so as not to
have interference. In the case of the ESRF the host is a 32 core Linux box with 16 GB RAM. The
MySQL daemon has about 10% of the load and the Database device server only 1%. The overall load
on the server is < .5. The server runs a number of other active device server processes too.

The other 40 control systems are one for each beamline. A beamline is made up of up to 10 hosts,
25 device servers and 500 devices. The beamlines have their own life cycle and start and stop when
they need to. The beamlines gets information from the accelerator control system via a dedicated
device per beamline which is fed with information from the accelerator. The beamline has direct
access to certain hardware which it needs to set or read.

There is at least one TANGO database for testing. But nothing prevents labs or individuals from
starting their own database for test purposes e.g. using the TANGO VM.

Figure : ESRF 42 control systems

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 35 of 42

Use Case Title Scheduling and deferring control operations

Proposer Dr. Simone RIGGI

Description

It is expected that DSH.LMC needs to perform controlled sequence of actions, possibly requiring
durations beyond the default TANGO command response time, interactions with different devices
and some kind of dialing interaction (i.e. progress reporting) between communicating parties. The
configuration of the antenna for observation, performing known safety or error handling actions (i.e.
dish stowing after power cut) in response to alarms, or setting-up the feed vacuum level for
operations are among the functionalities of DSH.LMC. What is the suggested approach in TANGO (or
available tools) to implement this kind of “workflow” or sequenced operation, beyond the provided
client API?

Moderators Comments

If it's just matter of long execution time for a single command in a TANGO device use the
asynchronous command.
Conversely, any complex sequence of operation better to be implemented as a TANGO device server.

The common pattern here is to implement a sequencer in a TANGO device class. There are a number
of possibilities for sequencer but Python is the one most commonly used today. A TANGO device class
exists for sequencing as part of the Sardana system and is called the Macro server. It executes macros
as Python sequences which are triggered via TANGO and their state is reflected in the device state.

Example 9.1 – ESRF uses the Macro device server from Sardana to implement the sequences which
control the state changes for the radio frequency system. More information on the Macro server here
:
http://www.sardana-controls.org/en/stable/devel/overview/overview_macroserver.html

Example macro sequence for switching the synchrotron RF system to off state :

"""This module contains macros that demonstrate the usage of macro parameters"""
from sardana.macroserver.macro import *
from PyTango import *
import time
from ssa_names import *
class ssa_off_standby(Macro):
 """Bring the SYRF SSA into STANDBY state"""
 def run(self):
 self.output("[ssa_off_standby] Start macro")
 #
 # import devices
 #
 self.power_supply = DeviceProxy (PowerSupply)
 self.debug("[DEBUG] Connected to device " + PowerSupply)
 self.waveguide = DeviceProxy (Waveguide)
 self.debug("[DEBUG] Connected to device " + Waveguide)
 self.amplifiers = []
 for i in (Amplifiers):
 self.amplifiers.append (DeviceProxy (i))
 self.debug("[DEBUG] Connected to device " + i)
 self.phase_loop = DeviceProxy (PhaseLoop)
 self.debug("[DEBUG] Connected to device " + PhaseLoop)

http://www.sardana-controls.org/en/stable/devel/overview/overview_macroserver.html

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 36 of 42

 self.cavities = DeviceProxy (Cavities)
 self.debug("[DEBUG] Connected to device " + Cavities)
 #
 # check that the transmitter is connected to the cavities
 #
 self.debug("[DEBUG] transmitter mode = " + str(self.waveguide.TRA0_mode))
 if self.waveguide.TRA0_mode != 1: # Cavity mode
 raise ValueError("Transmitter is not connected to the cavities, cannot go
further!")
 #
 # open regulation loop
 #
 self.phase_loop.Amplitude = 0.0
 self.phase_loop.RFAmplitude = 0.0
 self.phase_loop.OpenMagLoop()
 self.phase_loop.OpenPhaseLoop()
 self.phase_loop.On()
 #
 # Switch on power supply if necessary
 #

 if self.power_supply.State() != DevState.ON and self.power_supply.State() !=
DevState.ALARM:
 #
 # reset before switching power supply ON
 #
 self.output("Reset amplifiers")
 for i in (self.amplifiers):
 i.Reset()
 time.sleep(1)
 self.output("Reset power supply")
 self.power_supply.Reset()
 time.sleep(1)
 #
 # switch power supply ON
 #
 self.output("Switch ON the power supply")
 self.power_supply.On()
 time.sleep(5) # Transitient fault state!!!! Needs to be corrected.
 while self.power_supply.State() == DevState.MOVING:
 self.output("power supply is ramping-up, please wait")
 time.sleep(2)
 self.pausePoint()
 if self.power_supply.State() != DevState.ON and self.power_supply.State() !=
DevState.ALARM:
 raise ValueError("The power supply did not reach the ON state: \n" +
self.power_supply.Status())
 #
 # reset after switching power supply ON
 #

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 37 of 42

 self.output("Reset power supply")
 self.power_supply.Reset()
 time.sleep(1)
 self.output("Reset amplifiers")
 for i in (self.amplifiers):
 i.Reset()
 #
 # Switch on the cavities if necessary
 #
 if self.cavities.State() != DevState.ON and self.cavities.State() != DevState.ALARM:
 #
 # switch ON the cavities
 #
 if self.cavities.State() != DevState.ON and self.cavities.State() !=
DevState.ALARM:
 self.output("Switch ON the SY cavities")
 self.cavities.On()
 time.sleep(5)
 while self.cavities.State() == DevState.MOVING:
 self.output("Cavities are starting, please wait")
 time.sleep(2)
 self.pausePoint()
 if self.cavities.State() != DevState.ON and self.cavities.State() !=
DevState.ALARM:
 raise ValueError("The cavities did not reach the ON state: \n" +
self.cavities.Status())
 #
 # switch STANDBY the Amplifiers
 #
 for i in (self.amplifiers):
 amp_state = i.State()
 if amp_state != DevState.STANDBY and amp_state != DevState.ON and
amp_state != DevState.ALARM:
 i.Standby()
 self.output("STANDBY requested for amplifier " + i.dev_name())
 time.sleep(5)
 self.pausePoint()
 self.moving = True
 while self.moving == True:
 self.output("Amplifiers switching STANDBY in progress, please wait")
 time.sleep(2)
 self.pausePoint()
 self.moving = False
 for i in (self.amplifiers):
 amp_state = i.State()
 if amp_state == DevState.MOVING or amp_state ==
DevState.UNKNOWN:
 self.moving = True
 break
 #

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 38 of 42

 # check the STANDBY state
 #
 time.sleep(3) # Amplifier paases to off first!!!!!! Needs to be corrected
 for i in (self.amplifiers):
 amp_state = i.State()
 if amp_state != DevState.STANDBY and amp_state != DevState.ON and
amp_state != DevState.ALARM:
 raise ValueError("Amplifier did not reach the STANDBY state: \n" +
i.Status())
 self.output("[ssa_off_standby] End macro")
 return
 def on_abort(self):
 """Hook executed when an abort occurs. Overwrite as necessary"""
 self.output("[ssa_off_standby] Abort macro")
 pass
 def on_pause(self):
 """Hook executed when an pause occurs. Overwrite as necessary"""
 self.output ("[ssa_off_standby] Macro is in pause mode, wating for resume")

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 39 of 42

Use Case Title Software system monitor and Tango

Proposer Mr. Matteo DI CARLO

Description

One of the main responsibilities of the TM.LMC sub-element is the ability to monitor resources and
performance of TM as a computer network and as distributed application. As any other TM sub-
element, TM.LMC has been decomposed into different products/applications and one of them has to
be a software system monitor (SSM) like Nagios (www.nagios.org) or Zabbix (www.zabbix.com) for
the above reason.
The use case is about the collaboration model between a SSM and the tango framework. From the
SSM point of view, the tango framework is a list of services (the domains) and a list of processes
(device servers) and in this way, it is important to monitor the health status of them. On the other
hand, many times the control system built with the help of the framework has capabilities of
monitoring and control and one can think to collect all the elements from the SSM and from the
control system monitor everything. What is the best way to solve this? Are there any standards or
best practices to adopt?

Moderators Comments

As correctly reported the TANGO control system framework has built in monitoring and reporting
capabilities. Nevertheless, in a complex system, some services may not be implemented in the
framework, such as large database back-ends, large storage systems, or the network infrastructure
itself.
In principle TANGO and the SSM have different scopes. Design the architecture in a clean, sharp way;
avoid mixing different tools for the same purpose. This means that everything that is “in-band” with
respect to the control system should be managed by the TANGO framework, using it's own built-in
monitoring and reporting capabilities. Anything that is “out-of-band” could be advantageously
monitored with the SSM.
Consider the db back-end, the storage systems etc., the ones which won't have TANGO on board and
will be monitored by the SSM, as auxiliary systems for the telescope and import any relevant
parameter into the TANGO framework (for instance for alert, event correlation, etc...).
Refer to the following paper for infrastructure management considerations:
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thmib09.pdf

TANGO has a manager called Astor. This is used to manage all device servers and hosts declared in a
TANGO database. It allows all servers to be started, stopped and monitored from one application. It
relies on the Starter device server to manage the starting and stopping of all devices on a host. The
host starts the Starter at bootup time. Astor does not monitor the same parameters as nagios. Nagios
does this very well. One possible approach is to implement a device server which gets the overall
state information from nagios and which can then be logged and displayed as an alarm on the TANGO
monitoring applications and databases. Refer to the online documentation on Astor:
http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/astor_doc/index.html

Example 1.1 – ESRF uses Astor+nagios to manage 179 hosts and 2249 device servers for the
accelerator control system
Example 1.2 – ESRF uses Astor to manage 40 beamline TANGO control systems

Figure 2: Astor configured to control the ESRF accelerator control system
Figure 1: Astor summary of ESRF accelerator control system info
Figure 3 : Astor control window for example host with multiple device servers

http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thmib09.pdf
http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/astor_doc/index.html

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 40 of 42

Use Case Title State/Mode/Capability implementation

Proposer Dr. Simone RIGGI

Description

Each LMC system is expected to follow the abstract SKA Control Model when defining operational
states, modes and capabilities, in agreement with the prescriptions and naming conventions given in
the LMC Guideline Implementation (LIG) document. It is likely that some devices (i.e. interface
devices or devices in charge to map from internal to external state model) shall accommodate the
state/mode/capability information. In contrast, TANGO allows only a DevState within a given device
with a predefined list of state codes. The list of state codes can be extended to cover SKA convention
by manually modifying TANGO IDL core components but the information is not propagated to
developing tools (i.e. Pogo). During the DSH.LMC internal interface definition we therefore modeled
states/modes/capability with Enum attributes (recently introduced in TANGO 9). As far as we
understood it seems that the predefined state machine management (ruling allowed and forbidden
commands/operation under given mode/states) is lost. Furthermore how to consider the predefined
TANGO state and status information? Do we simply ignore them in the device implementation phase?

Moderators Comments

No. The predefined TANGO State (and Status) should be addressed anyway. They will carry some of
the information concerning the TANGO device and are mandatory for an effective operation of a
TANGO control system. The added Enum attributes for state/mode/capability will carry the additional
information. Unfortunately with this approach the predefined state machine management is lost for
the Enum attributes.
Consider adding a configurable State subsystem, managed by the TANGO core, that will allow a
number of additional user-defined states? i.e. fixed set of core states plus a number of user defined
states whenever needed. How to guarantee a homogeneous approach? Clients?
The TANGO states are an essential part of each TANGO device and are used by all the generic tools
and the TANGO device model. The TANGO state must be implemented as fully as possible. The
limitation of 14 states is the result of our experience with our previous control system where any
number of states was allowed. After 10 years we had almost 100 different states (many of them
similar) and it was impossible for generic tools to handle all the states. If you really need more than
14 states then consider defining a sub state which returns additional information.

If these are really sub-states then they should be limited using an ENUM attribute. One way of
ensuring all devices have the same interface for sub-states is to use a superclass device e.g.
SKADevice or LMCDevice, which implements the sub-state interface and could have a hook for
checking the sub-state state machine.

TANGO anti-pattern - changing the TANGO IDL file will break the generic tools and library and will
be equivalent to forking TANGO.

Example 3.1 – The LIMA framework for 2D detectors at the ESRF uses the TANGO state for the overall
state and manages sub-states for finer state transitions e.g. ARM detector, READING file, etc.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 41 of 42

Use Case Title Support for TM’s Data Driven Approach

Proposer Mrs. Lize VAN DEN HEEVER

Description

There is a lot of variety contributed by the different types of products that TM will have to
interface with in SKA. Hence, it is necessary for TM to optimize the integration cost between
TM and product LMC’s of SKA. TM takes a data driven approach to solve this and
standardizes the way TM integrates with all LMC’s. TM implements the idea through the
definition of a standard Self-Description (SD) schema that it uses to capture the information
about all LMC’s in a uniform manner. Each LMC provides their respective information to TM
through their respective SD. Following is an initial list of minimum items that will be
contained in the self-description:

a. The logical location details of the Element LMC.
b. The various generic operating states and the possible transitions that need to be

viewed from TM.
c. List of commands along with their parameters and attributes. This should also

contain the possible values, along with constraints for validation.
d. List of possible responses for the individual commands along with associated

parameters and attributes.
e. List of monitoring points along with associated details such as their rate of updates,

interpretations, allowed sampling frequencies, required to be logged and so on.
f. List of various statuses that the Element can resume, such as Health status levels.
g. List of events and alarms. This should contain the associated data such as their

types, severity levels, recommended handling, frequencies and so on.
h. Provide description for suppressing of alarms for Elements and their sub-Elements,

such as not-fitted, in-maintenance etc.
i. List of configurations for the maintenance and health checking of the Element LMC

such as parameters that TM should monitor.
j. List of issues that the Element can raise, process to troubleshoot and resolve.
k. List of events that the Element will need to subscribe to and be provided by TM, e.g.

Dish waits for the beam former from the CSP to be ready and send a ready event.
l. Provide description for any control loops required by the Element, including size of

data, source of data, calculations to be performed on data by TM, frequency of
updates.

The above information may also evolve going forward. Hence there should be a mechanism
in place to implement the SD approach so that all the above information pertaining to an
LMC can be captured efficiently and the process supported by appropriate validation and
consistency checking. All these information eventually will be consumed by various aspects
in TANGO, such as device server, Panic Tool for alarms, Archiver to store the monitoring data
and so on. So the process should ideally also allow translating this information into
implementation code automatically.

Note:

We saw the need for such a tool in the context of the ITER project. ITER CODAC team
implemented the SDD Editor to solve this problem for their context. Inspired by this, we
proposed the development of a Domain Specific Language (DSL) for SKA to solve the
problem of TM SDD implementation. This has already been prototyped and a demonstration
of the same will be provided as a video link shortly.

Document No.:
Revision:
Date:

000-000000-003
01
2016-02-26

 UNRESTRICTED

Author: A.CREMONINI, C.KNAPIC

Page 42 of 42

9 Appendix B - Agreed implementation solutions

This section is Still TBD and will be populated after any peer review part of the process or whenever
any salient aspect of the control system will be agreed at community level.

		2016-03-01T10:25:29-0800
	Adobe EchoSign agreement certified

