DISH LMC

Corrado Trigilio LMC Harmonisation Workshop Madrid 11-13 April 2016

Outline

- DSH LMC Team
- Dish Overview SKA-Mid
- DSH LMC High level Software architecture
 - PBS
 - DSH LMC SFW specifications derivation from requirements
 - Example for Pointing functions

DSH LMC team

INAF – Italy Catania, Trieste, Noto

Corrado Trigilio,

Adriano Ingallinera, Alessandro Marassi, Simone Riggi, Francesco Schillirò

Veronica Baldini, Ugo Becciani, Salvo Buttaccio, Igor Coretti, Alessandro Costa, Gaetano Nicotra, Carlo Nocita,

JLRAT – China Shijiazhuang

Zhang Yifan Zhang Qiang, Qiao Jianjiang, Geng Xuguang, Zhang Bing, Chen Long

SKA1 Mid

Science Drivers

- 21-cm HI-line: evolution of galaxies, (local, z ~ 0 to Hi z)
- All southern sky survey to detect all pulsars at 1400 MHz out to a distance of 10 kpc.
- Follow-up observations of detected pulsars at high resolution (<20 mas resolution).
- Carrying out a decade long timing campaign to time most detected pulsars and others.

Other Science objectives:

- Cosmic magnetism
- Star formation history
- Cradle of life
- Exoplanets
- SETI

- Transients (GRB, FRB, SN...)
- GW with pulsars
- AGN, radio jets
- ...other unknown?...

SKA1-MID After Re-baseline:

After Re-baseline:

- SKA Survey in Australia deferred
- PAF deferred
- Inclusion of high frequency band in the first phase (from both Gal and extraGal science needs)

After Re-baseline:

DISH

SKA1 Mid

Location: Karoo in SA

Figure 27 SKA1-Mid. Key sites in South Africa. SKA1-Mid is located at the Karoo Radio Astronomy Reserve (KRAR).

After Re-baseline:

DISH

SKA1 Mid

Location: Karoo in SA

Array Configuration:

3 spiral arms, high density at center **Max Baseline:** 150 km

Figure 28 SKA1-Mid on the Karoo Radio Astronomy Reserve, along with MeerKAT (in green) and various facilities (dark blue).

After Re-baseline:

DISH

SKA1 Mid

Location: Karoo in SA

Array Configuration:3 spiral arms,high density at centerMax Baseline: 150 km

Aperture: 32 664 m² (3% of 1km²) 197 dishes 133 SKA 15 m 64 Meerkat 13.5 m

Figure 29 Zoom of SKA1-Mid (white) on the Karoo Radio Astronomy Reserve, along with MeerKAT (in green) and various facilities (dark blue).

Dish Structure – Antenna

Dish Structure – Antenna

package

Band 1 Feed

package

10

Design: Gregorian reflector, offset, unblocked aperture; Main reflector projected diam : 15m Feed-arm down; Feeds at secondary focus Sub reflector diameter 5m

Dish Structure – Pedestal

Previous Dish Prototypes

DVA-1:

July 2014

NRC Canada

MKT-1:

South Africa March 2014 <image>

DVA-C: JLRAT China August 2014

SKA-Mid: SPFs - Bands

High priority bands for SKA-1 construction

SPF Bands

- <u>2: 950-1760 MHz</u>
- <u>5: 4.6-13.8 GHz</u>
- <u>1: 350-1050 MHz</u>
- 3: 1.65-3.05 GHz
- 4: 2.8-5.2 GHz

Frequency Coverage for SKA1

Band 5 considered as high priority after scientific meeting in Naxos, (galactic and extragalactic science) and re-baseline

SKA-Mid: SPFs - Bands

DISH

Band 2 feed horn design Cryo system

Band 3,4,5 Common cryostat \rightarrow Band 5 only for SKA1

Band 1 feed horn prototype Uncooled Feed and LNA

MeerKAT vacuum assemblies

SKA-Mid: SPFs - Bands

- Band 1 and LNA at room temperature. Two amplification stages, calibration noise.
- Band 2 cryostat and LNAs to ~20K. Two amplification stages, calibration noise.
- Bands 3, 4 and 5 in one cryostat. For Band 5 the entire system will be cooled.
- He System: Common He system; single He compressor and supply at yoke.
- Vacuum System: Rotary vane vacuum in indexer; vacuum lines to all SPF.
- Controller: in pedestal to C&M all three SPFs, He and vacuum systems, interfaces with the Dish LMC for external control and monitoring, uses **Tango**

SPF Band 1

SPF Band 2

SPF Band 3,4,5

MeerKAT vacuum assemblies

SKA-Mid: Receivers

From SPF to RX (location):

• Pedestal with RFoF links from feeds

Master Clock timer :

- time and frequency reference (SaDT)
- control of the calibration noise source

Digitisers:

- RF conditioning (filtering and level control).
- Bands 1-3 direct digitised (1 and 2 in the 1° and Band 3 in 2nd Nyquist zone)
- Bands 4 & 5 are band selected and direct digitised
- Band 5, two individually tuneable sub-bands of 2.5GHz bandwidth, direct digitised
- Data packetised and transmitted to CSP

Controller:

• in pedestal

• Uses Tango

	Frequency range (GHz)	Instantaneous bandwidth (GHz)	Sampling rate (GSps)	Total digitized bandwidth (GHz)	Sampling bit depth	Transmit bit depth	Raw data transmit rate (Gbps)
Band 1	0.35 – 1.05	0.700	4	2	8	8	64
Band 2	0.95 – 1.76	0.808	4	2	8	8	64
Band 3	1.65 – 3.05	1.403	3.17	1.585	8(1)	8	50.72
Band 4	2.80 - 5.18	2.38	12	6	4	4	96
Band 5	4.60 - 13.8	2 x 2.5 ⁽²⁾	32	5	3	4 ⁽³⁾	80

LMC physical overview

Data rate for SKA_Mid

DISH

TM_DSH data rate calculation: SKA_MID Dish							
		Number of		Bytes per	Throughput		
		sensors	update period	sample	(kbps)	Comments	
	Monitor slow	150	1	10	12		
Dich Structuro	Monitor fast	5	0,1	10	4		
Disti Structure	Pointing measured	2	0,1	10	1,6	time stamped pointing estimates (az/el + tilt) once every 10	
	Control	5	0,1	10	4	time stamped pointing control polinomial once every 100m	
SPE_{c} (Band 1-5)	Monitor slow	500	1	10	40		
5F13 (Ballu 1-5)	Monitor fast	5	0,1	10	4		
Receiver	montior slow	200	1	10	16		
Receiver	monitor fast	5	0,1	10	4		
Total	Monitor Control				81,6 4	Proposed specs kbps 200 kbps 10	

		Monitor (kbps)	Control (kbps)
SKA_Mid (DS, SPF, Rx)	Pedestal	200	10
SKA_Survey (DS, PAF)	Pedestal	100	10
SKA_Survey (DS, PAFRx)	Bunker	700.000	300.000

DSH Product Breakdown Structure

DISH

LMC.SFW Product Breakdown Structure

PBS: ISE Sub-element Monitor & Control Interface Manager

- implementing communication with the controllers of SE according to the internal ICD
- providing commands to control SE systems
- receive monitoring data, event and alarms from SE systems
- providing a stream of monitoring data/event/alarms towards other LMC packages higher in the functional hierarchy

If all SE use TANGO, the ISE block will be almost transparent

PBS: ITM

TM Monitor & Control Interface Manager

Implement external interface with TM.TELMGT according to the TM-LMC ICD (**non well defined**). It contains components handling and dispatching TM.TELMGT commands to internal LMC components, reporting data, metadata, software and firmware versions from LMC components to TM.TELMGT; services interfacing with Telescope Model.

Utilities as message parser and Self Description Data (SDD)

PBS: SMC LMC Self Monitor and Control

- Monitor and control of the LMC hardware (i.e. disk status, CPU temperatures, ...) and OS system services (i.e. networking, DBs, daemons, ...), start-up/shutdown of the components
- Monitor and control of all LMC software components according to predefined hierarchy levels reporting monitoring information and faults to Monitoring

PBS: CFGConfiguration
Manager

DISH

Responsible to set monitoring information reporting (level, drill-down...) requested by TM

PBS: MON

Monitoring Manager

Collecting and aggregating monitoring data (including self-monitoring data), capabilities from dish sub-elements to be reported to TM.TELMGT processing alarms, logs and events detected in sub-elements and LMC (filtering according to the Log Level in CFG, corrective actions, ...) before sending them to TM.TELMGT.

PBS: CAP

Capabilty Manager

To identify capabilities and availability of capabilities, to detect missing components in dish sub-elements, to perform mapping of sub-element operating states and modes from internal (to DSH) to external state model (SCM), to derive global states from sub-system states, configure the capabilities.

SKA Control Model (SCM):

- SCM Mapper (external S&M notation)
- DSH S&M Mapper (internal S&M notation)
- Sub-elements S&M Mapper (internal notation)

Capability Manager:

- Configurator
- Health manager

PBS: PNTPointing
ManagerSite of the second secon

Responsible for executing pointing of the dish. This includes the acquisition of the telescope model and parameters for static and dynamic pointing corrections, acquisition of the sensor values for dynamical pointing corrections, time stamp Az/El interpolation, computation of static and dynamic corrections, sending pointing coordinates to DS, TM and archive.

SAF, PBS: ARC

Safety, Archive, Power Managers

Responsible to take safety actions in presence of critical or **emergency** scenarios for **people or instrumentation**, such as power failure or TM communication cuts, strong wind at the station...

To store and retrieve data from/to the circular monitoring archive.

Monitor power distribution within the dish and capabilities of emergency power supply (UPS status...), allowing power cycling operations on hardware components.

PBS: USRUser interface, Tests,Integration, Remote Support

Utilities to build, test, integrate and maintain the LMC software system.

- supplying a build and verification suite for the entire LMC software, to be used during development and preintegration stage
- providing detailed emulators of each sub-element controller, including exposed commands, monitored data, alarms and faults to test the sub-element interface package
- providing tools to generate emergency or severe failure scenarios to test system response under such circumstances.
- providing the LMC GUI tools to view monitoring data in real-time, browse historical data, send commands to sub-element components supporting remote service operations, such software/firmware update, download of circular monitoring buffer and tunnelling capabilities to access engineering sub-element GUIs.

$PBS \rightarrow Requirements \rightarrow Functions$

Iterative procedure

Specifications derivation: $L4 \rightarrow L5$

From Level 4 Requirements (LMC) to Level 5,6,7 Specifications

Level 5: split specifications for and software...

L4 Req. ID	Requirement Description	L5 Req. ID/ Interface Def
R.LMC.CC.1 LMC apply pointing corrections	LMC shall apply corrections to the received pointing commands, to compensate for local pointing errors, using a pointing model provided by TM, including the following: - Structural deformations due to gravity (from pointing model and pointing command) - Corrections based on tilt sensor (if applicable)	R.LMC.CC.SFW.1 LMC apply pointing corrections
R.LMC.CC.2	LMC shall set all internal states, modes and configuration	R.LMC.CC.SFW.2 LMC Configure DSH
LMC Configure DSH.	data for DSH items, based on the external state, mode, configuration and capability commands received from TM.	D.I.M.LMC_SRx.D004 D.I.M.LMC_SRx.D005 D.I.M.LMC_SPF.D004 D.I.M.LMC_SPF.D005

... and hardware

R.LMC.ED.1 LMC Condensation EMC Condensation EMC Condensation Electronic equip damage or deg the presence Degraded funct directly after condensation h	nent shall be safe and withstand, without adation or additional maintenance tasks, f condensation while in the off state. onality and performance will be allowed start-up until such time that the s evaporated.	R.LMC.ED.HDW.1 LMC Condensation
---	--	------------------------------------

Specifications derivation: $L5 \rightarrow L6$

From Level 5 specifications (LMC.STW) to Level 6 Specifications

Level 6: definitions for software PBS items

L5 Number	L5 Description	L6 Number/L6 Name	L6 description	Refine
	LMC shall apply corrections to the received pointing commands, to compensate for local pointing errors,	R.LMC.CC.SFW.PNT.1	LMC shall use the static Dish Model Parameters provided by TM and store	R.LMC.FMD.SF W.1
R.LMC.CC.SFW.1	using a pointing model provided by TM, including the following:	Configure static Dish Model Parameters	This model shall include structural deformations due to gravity.	(correct pointing commands)
LMC apply pointing corrections	model and pointing command)	R.LMC.CC.SFW.PNT.2	LMC shall use a model provided by TM to compute pointing corrections based	R.LMC.FMD.SF
	- Corrections based on tilt sensor (if applicable)	Configure dynamic Dish Model Parameters (if applicable)	on sensors (tilt, Temp). (Formula to derive dAz dEl)	W.1

		R.LMC.CC.SFW.ITM.1 S&M, Configuration and capability command from TM.	LMC shall receive external state, mode ,configuration and capability commands from TM for itself and all sub-systems.	
R.LMC.CC.SFW.2	LMC shall set all internal states, modes and configuration data for DSH items, based on the external state, mode, configuration and capability commands received from TM.	R.LMC.CC.SFW.CAP.1 Internal ST&M setting	LMC shall set all internal states, modes and configuration data for DS , SPF , Rx and LMC itself based on the external state, mode, configuration and capability commands received from TM.	
		R.LMC.CC.SFW.CAP.2 ST&M mapping	LMC shall map each state and mode of the subs-systems into an overall state for DSH	

Specifications derivation: L6→L7

From Level 6 specifications (LMC.STW.item) to Level 7 Specifications

Level 7: definitions for components of PBS items (leaf level)

L6 Number/Name	L6 Description	L7 Number/L7 Name	L7 Description	Refine
R.LMC.CC.SFW.PNT.1		R.LMC.CC.SFW.PNT.STATIC.1 Read default parameters at startup	PNT.STATIC shall read the default static parameters at startup	
Configure static Dish Model Parameters	LMC shall use the static Dish Model Parameters provided by TM and store them in a file as default parameters. This model shall include structural deformations due to gravity.	R.LMC.CC.SFW.PNT.STATIC.2 Configure static Dish Model Parameters	PNT.STATIC shall receive static Dish Model Parameters from TM.	
		R.LMC.CC.SFW.PNT.STATIC.3 Defaults for static Dish Model Parameters	PNT.STATIC shall store the static dish model parameters as default configuration.	
		R.LMC.CC.SFW.PNT. DYNAMIC.1 Read default dynamical parameters at startup	PNT. DYNAMIC shall read the default dynamical parameters at startup	
R.LMC.CC.SFW.PNT.2 Configure dynamic Dish Model Parameters (if applicable)	LMC shall use a model provided by TM to compute pointing corrections based on sensors (tilt, Temp). (Formula to derive dAz dEl)	R.LMC.CC.SFW.PNT.DYNAMIC. 2 Configure dynamical Dish Model Parameters	PNT. DYNAMIC shall receive dynamical Dish Model Parameters from TM.	
		R.LMC.CC.SFW.PNT. DYNAMIC.3 Defaults for dynamical Dish Model Parameters	PNT. DYNAMIC shall store the dynamical dish model parameters as default configuration.	

Activity Diagram (example for PNT)

DISH

Thanks