

Core-to halo ratio, station size and "sea(s) of elements"

Stefan J. Wijnholds e-mail: wijnholds@astron.nl

SKA-low Consultation Meeting Manchester (UK), 25 February 2016

SKA-low consultation, Manchester (UK), 25 February 2016

Outline

- Core-to-halo ratio
 - outer stations required for ionospheric calibration
 - outer stations required for imaging
- Station size
 - effect on psf sidelobe requirement
 - effect on ionospheric calibration
 - effect on observing capabilities
- Sea(s) of elements
 - effect on reconfigurability

Analyses by Trott and Wijnholds answered the following questions:

- How many pierce points are required?
- How many pierce points are available?
- What is the SNR of those pierce points?
- How accurate can we solve ionospheric model parameters?

Key conclusions (motivated in the next slides):

- The current outer stations provide sufficient spatial coverage.
- We may want to move some antennas from remote sites to the core to enhance EoR/CD and pulsar science capabilities.

Ionospheric model per station Wijnholds, SKA-low consultation, April 2015 Wijnholds, URSI AT-RASC, May 2015

- For $\sigma_{\text{phase}} = 0.3$, we need SNR ≈ 2.5 (in 10 s, 1 MHz)
 - \Box average #calibrators / FoV for LOFAR (I) and SKA-low (r)
- #required sources for fitting of 2-D parabolic model / patch

Global ionospheric model Wijnholds, SKA-low consultation, April 2015

- Assumptions
 - radius of array: 50 km
 - height of ionospheric phase screen: 200 km
 - HPBW of station: 0.17 rad (35-m station at 50 MHz)
 - patch size as fraction of TID wavelength: 0.1066
 - TID wavelength: 120 km
 - 5 puncture points per patch
- we need about 551 puncture points for full array
- Proposed: 36 sites in outer are and a core
- Only 15 calibration sources needed (instead of 60!)
- SKA-low can detect over 160 sources @50 MHz: large headroom

AST(RON

Accuracy of global solution Analysis by Cathryn Trott

- More than sufficient calibration sources available (as expected)
- Relative error unnecessarily small for 10 s time scales
 - Clustering gives significant improvement at 50 MHz
 - Clustering reduces number of stations in inner area

configuration	frequency (MHz)	#calibrator	amplitude (rad)	precision (rad)	rel. error (%)
Random51	50	44	0.27	2.7 · 10 ⁻⁵	0.01
	150	67	0.03	8.3 · 10 ⁻⁶	0.03
	250	31	0.01	3.8 · 10 ⁻⁵	0.4
Spiral94b	50	45	0.27	5.3 · 10 ⁻⁶	0.002
	150	69	0.03	3.6 · 10 ⁻⁶	0.01
	250	32	0.01	3.5 · 10 ⁻⁵	0.3

AST(RON

Observations:

- ionospheric calibration feasible with less sensitivity at outer sites
- EoR / CD and pulsar science benefit from more core sensitivity
- LOFAR-NL: 14 remote 41-m stations with 768 HBAs
- Survey speed (SS) ~ Ω (A/T)²
 - Even with 768-element stations, $SS_{SKA} > 7 SS_{IOFAR}$

Recommendations:

- develop outer sites with 768 antennas (instead of 1536)
- add 27,648 antennas to core area

Result: 79%/83% (V4D/V4A) collecting area in core (was 58%/62%)

Impact station size on PSN Wijnholds & Bregman, URSI GASS, August 2014

- Option 1: 35-m stations with 256 antennas
- Option 2: 61-m stations with 768 antennas (same antenna density)
- larger stations: higher psf SLL, fewer subtractions for same psf SLL

SKA-low consultation, Manchester (UK), 25 February 2016

AST(RON

Discussion on station size

AST(RON

- Large stations have smaller FoV
 - Puts lower requirement on psf SLL
 - Reduction of gridding costs (scales as D⁻² to D⁻⁶)
 - Simplified ionospheric calibration (fewer patches)
- Large stations provide more reconfigurability
 - Use of substations
 - Tapering

Sea(s) of elements

- In V4A, each station consists of 6 substations
 - Correlating all substations requires 36x larger correlator
 - Observing with all substations not likely
 - Observing with substations will be done at lower sensitivity
 - Hence, we will likely not use all antennas
- Large stations / sea of elements in the core can be subdivided
 - Optimal: 20% 25% of antennas not used
 - Subdivision is not restricted to "hard-wired" stations
 - Sea of elements (e.g., 200-m "superstation") can provide many different station sizes / short baseline lengths
- Naturally, one would not opt for clumpy station configuration

SKA-low consultation, Manchester (UK), 25 February 2016

Conclusions / recommendations

- Configuration with 768 antennas on sites in outer area
 - 61-m stations have density of 256-antenna 35-m stations
- Add 27,648 antennas to core area
- Consider stations larger than 35 m, small seas of elements
 - Advantageous for imaging, calibration and reconfigurability
- Consider a sea of elements / superstation of ~ 200 m in center
 - Substation size ranging from few meters to station size
 - Large number of diverse short baselines
 - Stations can be tapered to match substation size
 - Overall sensitivity still limited by correlator capacity

- Very reconfigurable system: robust to new insights SKA-low consultation, Manchester (UK), 25 February 2016