SKA1-Low Error Analysis

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Robert Braun, Science Director 25 February 2016

Scientific Constraints:

- The highest possible filling factor of both individual stations and the core configuration over the key frequency interval of 100 200 MHz.
- Instantaneous field-of-view that exceeds about 4 deg² for EoR imaging and 16 deg² for EoR power spectra (both apply to the frequency range 50 – 200 MHz).
- Ability to provide excellent quality of ionospheric calibration: enough high sensitivity pierce points.
- Ability to provide excellent quality of direction dependent gain calibration: extremely low far sidelobes of station beam.
- High sensitivity and good visibility sampling to angular scales of about 10 to 1000 arcsec.

Practical constraints:

- Site-specific and maintenance constraints.
- Infrastructure Cost.

Desired solution:

- Highest possible filling factor of antennas in station tied to a nominal frequency (the $\lambda/2$ antenna spacing) of no lower than about 100 MHz.
- Tightest practical packing of stations within core consistent with maintenance requirements.
- Logarithmic decline of collecting area beyond core: radii of about 350m to 35km.
- Smallest total number of extra-core sites plus minimum spanning tree with adequate aperture sampling and instantaneous visibility coverage.
- Hierarchical station definition allowing "tuneable" choice of beam-forming scales (discrete or continuous) about 10 – 90 m.
- Identical station definition both inside and outside core.

Figure 1: The SKA1-low snap-shot (left) and 4-hour tracking (right) visibility coverage for a monochromatic observation at a nominal declination of -30.

Figure 1: The SKA1-low snap-shot (left) and 4-hour tracking (right) visibility coverage for a broad-band continuum observation (with 30% fractional bandwidth as example) at a nominal declination of -30.

Figure 1: Monochromatic (left hand panel) and broad-band continuum (right hand panel) image noise relative to the total array SEFD (bottom) as well as PSF near-in sidelobe levels for snap-shot (top) and 4-hour track (middle) observations for the SKA1-low configuration as function of required Gaussian beam size at a nominal frequency of 140 MHz.

- Parametric model relating residual calibration errors to effective image noise (Braun, 2013, A&A 551, 91)
- Each effect described by both intrinsic magnitude as well as correlation timescale and frequency bandwidth:

$$\sigma_{Vis}, \tau_T, \Delta v_F$$

 Basic unit of observation is an n-hour tracking observation (eg. HA = -4 - +4^h or -2 - +2^h)

- Distinction between effects due to sources within the image field or outside
 - Inside image: standard radiometer equation

 $\sigma_{Map} = \sigma_{Vis} / [M_T M_F N(N - 1)/2]^{0.5}$

 Outside image: via PSF sidelobes and via self-cal noise propagation PSF noise scales as N⁻², self-cal noise as N^{-1.5}, so self-cal noise dominates for large N (dish/station number)

 $\sigma_{Map} = \sigma_{Vis} (S_{Max}/S_{Tot}) \{N_C / [M_T M_F N^2 (N - 3)]\}^{0.5}$

- Outcome of multi-track observing campaign depends on nature of each error
 - Errors associated with random processes average down as $\sqrt{number tracks}$
 - Errors in source model of sky or description of the stationary instrumental response do not average down

Parameter	Definition					
φ _c	Main beam "external" gain calibration error					
η_{F}	Far sidelobe suppression factor					
٤ _F	Far sidelobe attenuation relative to on-axis					
ε	Near-in sidelobe attenuation relative to on-axis					
ε _M	Discrete source modelling error					
P (arcs)	Mechanical slowly varying systematic pointing error					
τ _P (min)	Timescale for slowly varying pointing error					
ε' _Ρ	Rapidly varying random pointing induced gain error					
τ' _P (sec)	Timescale for rapid pointing errors					
ε _Q	Main beam shape asymmetry					
ε _B	Main beam shape modulation with frequency					
l _c (m)	Effective "cavity" dimension for frequency modulations of main beam					
τ*	Nominal self-cal solution timescale (10% PSF smearing at first null)					
Δν*	Nominal self-cal solution bandwidth (10% PSF smearing at first null)					
σ_{Sol}	Self-cal solution noise per visibility required for convergence					
σ_{Cfn}	Source confusion noise					
σ_{Cal}	"External" gain calibration noise					
σ_{T}	Thermal noise					
σ_{N}	Nighttime far sidelobe noise term					
σ_{D}	Daytime (includes Sun) far sidelobe noise term					
σ_{s}	Near-in sidelobe noise term					
σ_{P}	Main beam slow pointing induced noise term					
σ' _Ρ	Main beam rapid pointing induced noise term					
σ _Q	Main beam asymmetry induced noise term					
σ_{B}	Main beam frequency modulation induced noise term					
σ _M	Source modelling error induced noise term					

Parameter	Definition						
φ _c	Main beam "external" gain calibration error						
η _F	Far sidelobe suppression factor						
ε _F	Far sidelobe attenuation relative to on-axis						
ε _s	Near-in sidelobe attenuation relative to on-axis						
ε _M	Discrete source modelling error						
P (arcs)	Mechanical slowly varying systematic pointing error						
τ _P (min)	Timescale for slowly varying pointing error						
ε' _Ρ	Rapidly varying random pointing induced gain error						
τ' _P (sec)	Timescale for rapid pointing errors						
ε _Q	Main beam shape asymmetry						
ε _B	Main beam shape modulation with frequency						
l _c (m)	Effective "cavity" dimension for frequency modulations of main beam						
τ*	Nominal self-cal solution timescale (10% PSF smearing at first null)						
Δν*	Nominal self-cal solution bandwidth (10% PSF smearing at first null)						

σ_{Sol}	Self-cal solution noise per visibility required for convergence
σ_{Cfn}	Source confusion noise
σ_{Cal}	"External" gain calibration noise
σ_{T}	Thermal noise
σ_{N}	Nighttime far sidelobe noise term
σ_{D}	Daytime (includes Sun) far sidelobe noise term
σ_{s}	Near-in sidelobe noise term
σ _P	Main beam slow pointing induced noise term
σ' _P	Main beam rapid pointing induced noise term
σ_{Q}	Main beam asymmetry induced noise term
σ_{B}	Main beam frequency modulation induced noise term
σ _M	Source modelling error induced noise term

SKA1-Low assumed instrumental parameters

Telescope	VLA B-Cfg	SKA1-Mid	LOFAR-NL	SKA1-Low	
N	27	197	62	512	
d (m)	25	15	31	35	
B _{Max} (km)	11	150	80	65	
B _{Med} (km)	3.5	2.6	6.6	4.0	
φ _c	0.1	0.1	0.2	0.2	
τ _c (min)	15	15	15	15	
η_F	0.1	0.2	0.5	0.5	
ε _s	0.02	0.01	0.1	0.1	
P (arcs)	10	10			
τ _Ρ (min)	15	15			
ε' _Ρ	0.01	0.01	0.01	0.01	
τ' _P (sec)	5	5	60	60	
ε _Q	0.055	0.04	0.01	0.01	
ε _B	0.05	0.01	0.01	0.01	
I _c (m)	8.2	7	10	10	

LOFAR-NL Configuration

Figure 9. Relative visibility density (left) and cumulative visibility distribution (right) for LOFAR-NL based on a 4-hour track at $\delta = +30^{\circ}$. The median baseline length for such an observation is 6.6km.

LOFAR-NL deep integrations

• Noise budget for deep integrations

LOFAR-NL deep integrations

- A very high modelling precision of $\underline{\varepsilon}_{M} = 0.002$ must be achieved.
 - 20,0000 50,000 source components (mostly main beam and near-in sidelobes) being used for the most demanding apps
 - Current models based on wavelets, Gaussians, delta functions
 - Must take account of time and bandwidth smearing for data comparison
 - Scope for improved source representation
- Post-calibration frequency modulation of the main beam gain must be less than $\underline{\varepsilon}_{B} = 0.002$.
- Post-calibration residual main beam azimuthal asymmetries must be less than $\underline{\varepsilon}_{\Omega} = 0.0005$.
 - SageCal approach uses 100's of clusters of nearby source components to determine direction dependent gain solutions: combination of ionospheric phase and station beam shape amplitude
 - Good station beam model would make this much easier/better

LOFAR-NL deep integrations

- Random electronic gain variations (τ ≈ 1^m) that induce station "pointing" offsets must be kept below <u>ε'_P</u> = 0.006.
- The brightest 1.0 dex [= $\log_{10}(\epsilon_S / \underline{\epsilon}_S) = \log_{10}(0.01/0.001)$] of random sources occurring within the main beam near-in sidelobes must be included in the self-cal model.

Need to include 2000 – 3000 sources brighter than about 35 mJy

- The brightest 0.2 dex [= $\log_{10}(\eta_F/\underline{n}_E) = \log_{10}(0.5/0.3)$] of sources occurring over the entire visible sky must be included in the self-cal model and subtracted.
 - Need to include all sources brighter than about S_{1.4GHz} ≈ 520 Jy: only Cygnus A and Cas A (and Sun!)
 - (Also depends on $B_{Med} = 6.6$ km!)

Figure 13. Relative visibility density (left) and cumulative visibility distribution (right for SKA1-Low based on a 4-hour track at $\delta = -30^{\circ}$. The median baseline length for such an observation i 4.0km.

• 512x35m station correlations noise budget

- Extremely high modelling precision of $\underline{\epsilon}_{M}$ =0.001 must be achieved.
 - 100,000's of source components
 - Will almost certainly require new source representation methods
 - Must take account of time and bandwidth smearing for data comparison
- Post-calibration frequency modulation of the main beam gain must be less than $\underline{\varepsilon}_{\rm B} = 0.002$.
- Post-calibration residual main beam azimuthal asymmetries must be less than $\underline{\varepsilon}_{\Omega} = 0.0004$.
 - Very high quality station beam model probably vital in guiding choice of suitable "clusters" to use in self-cal

- Random electronic gain variations (τ ≈ 1^m) that induce station "pointing" offsets must be kept below <u>ε'_P</u> = 0.004.
- The brightest 1.3 dex [= $\log_{10}(\epsilon_S / \underline{\epsilon}_S) = \log_{10}(0.01/0.001)$] of random sources occurring within the main beam near-in sidelobes must be included in the self-cal model.

Need to include 3000 – 4000 sources brighter than about 15 mJy

• The brightest 1.0 dex [= $\log_{10}(\eta_F/\underline{n}_E) = \log_{10}(0.5/0.05)$] of sources occurring over the entire visible sky must be included in the self-cal model and subtracted.

- Need to include 5 – 10 sources brighter than about $S_{1.4GHz}$ ≈ 85 Jy

SKA1-Low / LOFAR-NL calibration challenge

Telescope Application	<u>n</u> _E	<u>23</u>	<u>P</u>	<u>e'</u> <u>P</u>	<u>٤</u>	<u>E</u> B	<u>8</u>
VLA B-Cfg Self-cal Sol	-	-	-	-	-	-	0.1
Spectral	-	0.004	8	0.03	<mark>0.01</mark>	0.006	0.01
Continuum	-	0.001	0.6	<mark>0.002</mark>	0.0007	0.003	0.002
SKA1-Mid Self-cal Sol	-	-	-	-	-	-	-
Spectral	-	0.0007	6	0.06	0.001	0.001	0.001
Continuum	-	0.0006	1	0.01	0.0003	0.001	0.001
LOFAR-NL Self-cal Sol	-	-	-	-	-	-	<mark>0.1</mark>
Spectral	<mark>0.3</mark>	0.001	-	<mark>0.03</mark>	<mark>0.003</mark>	<mark>0.002</mark>	<mark>0.002</mark>
Continuum	<mark>0.3</mark>	0.001	-	<mark>0.006</mark>	<mark>0.0005</mark>	<mark>0.02</mark>	<mark>0.002</mark>
SKA1-Low Self-cal Sol	<mark>0.15</mark>	-	-	-	-	-	<mark>0.1</mark>
Spectral	<mark>0.05</mark>	<mark>0.0005</mark>	-	<mark>0.02</mark>	<mark>0.003</mark>	<mark>0.002</mark>	<mark>0.001</mark>
Continuum	<mark>0.08</mark>	<mark>0.0006</mark>	-	<mark>0.004</mark>	<mark>0.0004</mark>	<mark>0.01</mark>	0.001

- For most calibration parameters, improvement of 2× relative to LOFAR is enough
- Largest increment, 6×, in realm of "all-sky" source modeling at 50 100 MHz

- 85x86m super-station correlations noise budget
- Calibration challenge exacerbated by factor ≈ 4

- 3072x14m sub-station correlations noise budget
- Calibration challenge relaxed by factor ≈ 4

SKA1-Low implications

- Median baseline length of configuration is vital factor in determining magnitude of calibration challenge
 - − Keep B_{Med} as large as possible: must keep ≥ 50% stations B ≥ 4km
 - Only viable method of keeping calibration tractable
 - Required precision scales as B_{Med}^{-1.5}
- Effective station number has major implications for calibration and HPC requirements (in opposite sense)
 - Standard "station": cal. challenge about 2x LOFAR @ HPC = 1
 - "Super-station": cal. challenge about 8x LOFAR @ HPC = 1/36
 - "Sub-station": cal. challenge about 0.5x LOFAR @ HPC = 36
 - Required precision scales as N^{-1} , but HPC scales as N^2
- Keeping option of all three beam-forming modes ("sub-" and "super-" as well as "station") could be vital for both science and calibration

SQUARE KILOMETRE ARRAY

