
	
	

	
	
	

Name	 Designation	 Affiliation	 Signature	

Authored	by:	

Nick	Rees	 Head	of	
Computing	and	

Software	

SKAO	 	

Date:	 2016-06-03	

Owned	by:	

	 	 	 	

Date:	 	

Approved	by:	

	 	 	 	

Date:	 	

Released	by:	

	 	 	

	
	
	

	

Date:	 	

SKA	SOFTWARE	ENGINEERING	PROCESS	
HARMONISATION	

Document	number	...	SKA-TEL-SKO-0000558	
Context	...	PPP-PPP-PPP-TTT	
Revision	...	1.0	
Author	...	Nick	Rees	
Date	..	2015-06-06	
Document	Classification	...	UNRESTRICTED		
Status	...	Draft	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	2	of	11	
		

	

DOCUMENT	HISTORY	
Revision	 Date	Of	Issue	 Engineering	Change		

Number	
Comments	

0.1	 2016-05-25	 -	 First	draft	release	for	internal	review	

0.2	 2016-06-01	 	 After	suggestions	from	SE	and	presentation	to	EIT	
meeting	

1.0	 2016-06-03	 	 Reformatted	to	SKA	template.	

	
	

DOCUMENT	SOFTWARE	
	 Package	 Version	 Filename	

Wordprocessor	 MsWord	 Word	for	Mac	
2015	

SKA-TEL-SKO-0000558-Rev1	SKA	Software	Engineering	Process.docx	

Block	diagrams	 	 	 	

Other	 	 	 	

	
	

ORGANISATION	DETAILS	
Name	 SKA	Organisation	

Registered	Address	 Jodrell	Bank	Observatory	

Lower	Withington	

Macclesfield	

Cheshire	

SK11	9DL	
United	Kingdom	
	
Registered	in	England	&	Wales	
Company	Number:	07881918	

Fax.	 +44	(0)161	306	9600	
Website	 www.skatelescope.org	

	
	 	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	3	of	11	
		

	

	
TABLE	OF	CONTENTS	

1	 INTRODUCTION	..	6	
1.1	 Purpose	of	the	document	...	6	
1.2	 Scope	of	the	document	..	6	

2	 REFERENCES	..	8	
2.1	 Applicable	documents	..	8	
2.2	 Reference	documents	..	8	

3	 REQUIREMENTS	...	9	

4	 PROCESS	..	10	
4.1	 Timescales	..	11	

	
	
	
	 	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	4	of	11	
		

	

LIST	OF	FIGURES	
No	table	of	figures	entries	found.	
This	is	an	automatic	table	of	contents.	To	use	it,	apply	heading	styles	(on	the	Home	tab)	to	the	text	
that	goes	in	your	table	of	contents,	and	then	update	this	table.		
		
If	you	want	to	type	your	own	entries,	use	a	manual	table	of	contents	(in	the	same	menu	as	the	
automatic	one).	
	
	
	

LIST	OF	TABLES	
No	table	of	figures	entries	found.	

This	is	an	automatic	table	of	contents.	To	use	it,	apply	heading	styles	(on	the	Home	tab)	to	the	
text	that	goes	in	your	table	of	contents,	and	then	update	this	table.		
		
If	you	want	to	type	your	own	entries,	use	a	manual	table	of	contents	(in	the	same	menu	as	the	
automatic	one).	

	
	
	
	 	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	5	of	11	
		

	

LIST	OF	ABBREVIATIONS	

AN................................. Another

EX Example

SKA Square Kilometre Array

SKAO SKA Project Office

	
	 	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	6	of	11	
		

	

1 Introduction	
1.1 Purpose	of	the	document	

Part	of	the	role	of	the	SKAO	as	the	SKA	design	authority	is	to	understand	the	diversity	of	the	software	
and	computing	systems	that	are	being	proposed	and	attempt	to	harmonize	these	systems	across	the	
elements	in	order	to	reduce	the	diversity	of	processes	and	systems	that	will	be	delivered	to	the	AIV	
and	operations	teams.	A	key	part	of	this	is	to	harmonize	the	software	engineering	processes	(as	much	
as	is	practicable)	so	that	when	software	is	delivered	it	is	delivered	in	a	consistent	way,	to	an	agreed	
set	of	standards.	Many	of	computing	elements	of	the	project	have	indicated	a	desire	to	move	towards	
a	more	agile	form	of	development,	but	no	processes	have,	as	yet,	been	defined	as	to	describe	what	
this	 means.	 This	 document	 outlines	 a	 development	 to	 define	 a	 basic	 set	 of	 requirements	 for	 all	
software	deliveries,	and	define	processes	for	software	engineering	in	the	SKA	context.	

1.2 Scope	of	the	document	

The	scope	of	the	SKA	Software	Engineering	process	could	vary	considerably,	partly	because	there	is	a	
grey	area	dividing	software,	firmware	and	hardware.	It	is	relatively	easy	to	define	many	aspects	of	the	
process	 if	 the	scope	 is	kept	small	 (i.e.	only	for	standard	software	and	computer	architectures),	but	
gets	more	difficult	at	 scale	and	 for	non-standard	architectures	 (GPU	and	FPGA	development	being	
different	from	CPU).	Even	so,	it	is	still	important	that	we	understand	the	engineering	process	for	these	
more	difficult	cases,	and	understand	the	development	model,	particularly	if	a	non-waterfall	approach	
is	being	proposed.	Hence,	the	end	result	may	be	a	layered	process.	More	esoteric	developments	have	
to	justify	and	outline	their	dependencies	and	how	the	life	cycle	of	their	system	will	be	managed.	Other	
developments,	which	use	a	more	standard	toolset,	will	have	to	share	a	development	environment,	
processes	and	dependencies	that	are	harmonized	across	many	elements.	

There	 is	also	overlap	with	 the	Consortia’s	CDR	Statement	of	Work	 for	 the	CDR	deliverables,	which	
includes	the	following	three	deliverables	(based	on	guidance	from	the	ECSS	standards,	ECSS-E-40	Part	
2	in	particular):	

• Software	architecture	models	and	use	cases	
• Software	libraries	required	to	demonstrate	compliance	
• Software	 configuration	 information	 (operating	 system,	 libraries,	 compilers	 etc.)	 for	

demonstration	of	compliance.	

This	proposal	builds	on	these	deliverables,	but	is	more	encompassing	and	also	strives	for	horizontal	
harmonization	across	the	elements	and	consortia.		

Because	of	the	diversity	of	the	SKA	software,	there	will	not	be	a	one	size	fits	all	standard	–	there	will	
be	a	layered	approach	and	not	all	areas	of	the	standard	will	apply	to	all	software.	Some	things	will	be	
universal	-	all	software	will	have	to	specify	their	dependencies;	and	some	will	be	optional	–	for	example	
use	of	a	specific	continuous	integration	environment.	Some	elements	have	indicated	a	desire	to	depart	
from	the	current	waterfall-like	model	and	adopt	an	agile	approach	to	development,	and	part	of	the	
process	 is	 to	define	 this	agile	process.	Other	elements	may	be	best	suited	 to	a	waterfall	approach	
because	they	are	closely	linked	to	hardware.	However,	it	is	anticipated	that	the	standard	will	have	a	
significant	impact	in	many	areas,	for	example:	

• SDP:	Most	sub-elements	
• TM:	Most	sub-elements		
• CSP:	LMC.	Possibly	other	software	elements.	
• LFAA:	LMC	and	MCCS	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	7	of	11	
		

	

• DISH:	LMC.	Possibly	other	software	elements.	
• SADT:	Software	in	the	timing	system.	
• AIV:	Principal	customer	of	the	end	products.	Will	also	have	their	own	scripts	that	need	to	be	

developed,	versioned,	tested	and	sanctions.	
	 	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	8	of	11	
		

	

2 References	
2.1 Applicable	documents	

The	following	documents	are	applicable	to	the	extent	stated	herein.	In	the	event	of	conflict	between	
the	contents	of	the	applicable	documents	and	this	document,	the	applicable	documents	shall	take	
precedence.	

[AD1] Applicable	Document	1	

	

2.2 Reference	documents	

The	 following	 documents	 are	 referenced	 in	 this	 document.	 In	 the	 event	 of	 conflict	 between	 the	
contents	of	the	referenced	documents	and	this	document,	this	document	shall	take	precedence.	

[RD1] Reference	Document	1	

	

	

	 	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	9	of	11	
		

	

3 Requirements	
Proposing	 that	 that	all	 consortia	must	adopt	and	be	certified	 to	and	existing	software	engineering	
standard,	such	as	ECSS/CMM/TSP	etc.	would	be	simple,	but	would	not	necessarily	have	the	desired	
results.	More	important	is	to	document	a	base	set	of	processes	and	standards	we	can	agree	on,	and	
then	improve	them	when	necessary	as	the	system	evolves.	If	this	agreed	set	then	maps	easily	to	an	
existing	standard	process,	and	we	could	adopt	that	standard	then	this	would	be	ideal,	but	it	is	not	a	
requirement	for	us	to	move	forwards.	

As	a	starter,	the	following	is	an	incomplete	set	of	requirements	that	should	be	defined	(Note:	whether	
these	are	actually	SKA	L1-type	requirements,	or	just	serve	to	define	a	standard	is	debatable):	

• An	Agile	development	process,	including:	
o A	 defined	 semi-continuous/iterative	 process	 of	 design,	 development,	 testing,	

delivery,	integration	and	verification.	
o A	defined	long-term	roadmap	for	each	element’s	development	goals.	There	is	not	that	

much	 difference	 between	 a	 road	 map	 and	 a	 project	 plan,	 except	 the	 roadmap	
focusses	on	a	set	of	periodic	goals	(i.e.	like	Intel’s	tick-tock	roadmap),	which	are	tied	
into	risk	reduction	and	delivering	functionality	when	it	is	needed	–	both	to	coincide	
with	the	main	waterfall	milestones	of	the	non-software	parts	of	the	project,	and	the	
AIV	milestones.	The	roadmap	shall	be	harmonized	across	the	system	and	based	on	
the	roll-out	plan.	

o Regular	reviews	scheduled	to	coincide	when	each	of	the	periodic	goals	are	delivered	
where	we	assess	the	progress	to	date	and	adjust	the	roadmap	for	the	future.	

• A	continuous	integration	system	and	set	of	processes	to	validate	that	the	software	meets	basic	
QA	standards,	including:	

o A	central,	globally	visible,	set	of	repositories	so	that	we	can	monitor	the	current	state	
of	code	development.	

o A	workflow	 that	 ensures	 a	 code	 review	 of	 all	 committed	 code,	 and	 pull	 requests	
accepted	by	authorised	individuals.	

o Software	 simulations/stubs/drivers/mocks	 for	 all	 major	 interfaces	 to	 enable	 sub-
system	and	system	level	tests.	

o Automated	build	on	commit.	
o Automated	 test	 on	 commit	 –	 with	 unit	 tests	 having	 certain	 minimum	 coverage	

requirements	as	well	as	sub-system	and	system	level	tests.	
o Automated	documentation	generation.	
o Deployment	 scripts,	 which	 includes	 bare-metal	 deployment	 so	 automatically	

documents	the	full	dependency	list.	
• A	set	of	basic	software	standards	

o Defined	 software	 license	 (preferably	 and	 open	 source	 permissive	 license:	 e.g.	
Apache2).	

o Defined	primary	dependencies,	for	example:	
§ Principal	O/S	(e.g.	Debian)	
§ Principal	software	frameworks	(e.g.	Tango)	
§ Principal	GUI	frameworks	(e.g.	Taurus)	
§ Principal	source	code	manager	(e.g.	Git)	
§ Principal	deployment	manager	(e.g.		Ansible)	
§ Principal	supported	languages	(e.g.		C++/Python,	Java,	etc.)	
§ Etc.	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	10	of	11	
	
	

o A	process	of	approving	and	recording	additional,	element	specific,	dependencies.	This	
could	include	FPGA	development	tools,	for	example,	as	well	as	more	generic	software	
tools.	

o Basic	coding	standards:	
§ C++:	 (e.g.	 Follow	 Google	 C++	 Style	 Guide,	 but	 with	 C++	 Exceptions	

allowed/required)	
§ Python:	(e.g.	Follow	PEP-8,	PEP-257	and	PEP-423	guides)	
§ Java:	(e.g.	Follow	Google	Java	Style	Guide.)	

	

4 Process	
The	development	of	the	process	should,	first	and	foremost,	be	viewed	as	a	harmonization	exercise,	
rather	than	centrally	enforced.	The	SKAO	requires	standards	to	be	adopted	to	ensure	that	the	final	
system	is	well	understood,	of	sufficient	quality,	and	maintainable,	but	SKAO	relies	on	the	technical	
expertise	of	the	consortia	to	provide	the	core	of	the	expertise.	

The	process	will	start	with	the	hiring	of	a	consultant	to	provide	short-term	resource	in	the	Office	to	
support	the	development	of	the	process	and	provide	experience	of	similar	developments.		

Simultaneously,	there	will	be	a	request	to	all	consortia	to	provide	the	current	state	of	their	thinking	
about	their	processes.	Some	consortia	have	given	presentations	on	this,	and	some	have	more	formal	
documentation.	Consortia	would	also	be	asked	to	nominate	one	(or	possibly	two)	people	who	would	
be	willing	and	able	to	participate	in	a	harmonization	team.	

This	 information	 would	 then	 be	 reviewed	 in	 the	 office	 with	 the	 consultant	 and	 the	 consortia	
representatives	consulted	to	determine	the	following:	

1. Tools/methods	currently	in	use	in	the	SKA	
2. Key	drivers	

a. From	the	SKA	Organisation	
b. From	consortia/contractors	

3. Discussion	of	the	expected	development	lifecycle	for	SKA.	
4. Consideration	of	existing	standards	and	mechanisms	that	could	be	adopted.	
5. Identification	of	specific	driving	requirements	or	conditions	that	must	be	addressed.	
6. Roles	and	responsibilities:	Who	will	be	responsible	for	what	in	the	main	construction	phase,	

what	is	the	responsibility	of	the	contractors,	consortia	and	SKA	office.	

This	 would	 be	 supplemented	 by	 video	meetings	 with	 the	 consortia	 singly	 or	 all	 together,	 and	 in	
discussions	in	and	around	SPIE	and	at	the	LMC	Harmonization	meeting	and	the	scope	of	the	Software	
Engineering	Plan	would	be	agreed.	

After	this,	the	development	of	the	Software	Engineering	Plan	can	be	broken	down	into	segments,	for	
example,	Software	Development	could	be	dealt	with	 independently	of	 Integration	and	Verification	
and	Validation.	This	allows	work	to	be	focused	on	a	small	amount	of	the	development	plan	at	a	time	
so	 that	 reviews	 and	 discussions	 can	 be	 more	 focused	 and	 productive.	 For	 each	 segment	 of	 the	
Software	Engineering	Plan	the	proposed	activities	would	be	as	follows:	

1. Development	 of	 a	 Software	 Engineering	 Plan	 segment	 by	 the	 consultant,	 taking	 into	
consideration	the	inputs	from	the	consortia	and	discussions	with	SKA	team	members.	

2. The	proposed	Engineering	Plan	segment	will	be	reviewed	by	SKA	Organisation	and	immediate	
issues	addressed.	

3. The	segment	will	then	be	released	to	the	wider	consortia	for	review	and	issues	and	areas	of	
further	work	identified.	

Document	No.:	
Revision:	
Date:		

SKA-TEL-SKO-0000558	
1.0	
2015-06-06	

	 UNRESTRICTED	
Author:	NICK	REES	

Page	11	of	11	
	
	

4. Discussion	and	resolution	of	issues.	Given	the	(potentially)	large	number	of	contributors	it	is	
unlikely	 that	 all	 issues	 can	 be	 resolved	within	 the	 scope	 of	 the	 contractor.	 Consequently,	
mechanisms	should	be	put	in	place	to	ensure	that	changes	are	carefully	tracked	and	addressed	
over	a	longer	time	period	–	and	this	may	be	transferred	to	new	staff	to	be	hired	in,	or	seconded	
to,	the	office.	

5. Update	 of	 the	 Software	 Engineering	 Plan	 segment.	 Ultimately	 this	 would	 become	 an	
applicable	document	to	tenders	for	software	development	contracts.	

Once	all	segments	of	the	Software	Engineering	Plan	have	been	addressed,	the	entire	Plan	would	be	
subject	to	a	final	wider	review	and	can	be	released	and	made	available	as	an	Applicable	Document	to	
the	future	tenders.	

4.1 Timescales	

Proposed	timescales:	

• 25	May:	Circulation	of	proposal	to	SKAO	Engineering	teams	[Done]	
• 27	May:	Discussion	at	EIT	Progress	Meeting	[Done]	
• June:	EPM’s	to	request	current	thinking	and	documentation	from	CPM’s,	with	response	by	20	

June.	[In	progress]	
• 20	June:	Engagement	of	consultant.	Evaluation	of	responses.	
• 23	June:	Presentation	of	the	LSST	Software	Engineering	Process	at	SKAO	at	11:00,	followed	by	

discussion	about	how	their	ideas	are	relevant	to	SKA.	
• 4-6	July:	Discussion	at	LMC	Harmonization	meeting.	
• July-August:	Development	of	Software	Engineering	Process.	
• October:	Presentation	of	Software	Engineering	Process	at	Stellenbosch	

