
MeerKAT Control & Monitoring Team

Software Development Process, 
Tools and Environment Experiences

04 Oct 2016

Neilen Marais, 
Theuns Alberts

1



Agenda

● Development Plan Overview

● Management Tools

● Development Process

● Development Environment

● GUI Development

● Documentation

Agenda

2



Agenda

Development Plan Overview

3



Agenda
● Project split into a set of Array Releases [1]

○ Similar to SKA Array Assemblies

● CAM Requirements grouped into “Timeframes”. How?
○ Functional Analysis:

■ Requirements ... allocated to ... Functions
○ Project Planning:

■ Functions ... required by ... Array Release X
○ CAM Requirements Grouping:

■ Reqs/Functions for Array Release X … grouped as … 
Timeframe X

MeerKAT Project Phases

4



Agenda
● CAM knows exactly the required functionality and what 

requirements to verify and qualify against for each Array 
Release - this defines our Development Cycles

● Each cycle allows for:
○ Requirements review
○ Design review and baseline
○ Qualification baseline

● Do not overlook the iterative nature and benefits thereof 
even for such large cycles at a high level of the project plan.
○ but smaller is better
○ RTS system suffered from spurious requirements

Development Cycles

5



AgendaCAM Development Plan

6



Agenda
● Do not overlook the iterative nature and benefits thereof 

even for such large cycles at a high level of the project plan.
○ But smaller is better!

● RTS system had spurious requirements
○ Delayed rework of KAT-7 -> MeerKAT architecture
○ Wasted CAM dev time building MeerKAT-like features on 

KAT-7 architecture
○ Wasted correlator dev time trying to "look" like MeerKAT

● Commissioners not included early enough
○ Have incredible tacit information about early priorities

Development Experiences

7



Agenda
● Shorter SE cycles for software/gateware than hardware

● Be willing to modify system requirements 
○ For each cycle
○ On the basis of previous cycle(s) telescope user input 
○ Get buy-in from top level of project / SE 

● Also: Ensure precise harmonization of technical terms used 
by subsystems as design progresses.

● Get minimal running prototype ASAP
○ Ties in with agile

● Idea: commissioners are "customers" in early phases
○ Commissioners should have clout
○ SE / top level project facilitate

Development Recommendations

8



Agenda

Development Process

9



Agenda
● An umbrella term for a set of methods and practices based 

on some core principles.

● Agile is not a silver bullet
○ can fail just like any other non-Agile project
○ it will allow you to fail faster though

● Major benefit is the quick feedback due to the iterative 
development approach

● New? Take small steps, transition gradually and allow time

“You are Agile when you know enough about the practices to 
adapt them to the reality of your own specific situation.”

Agile

10

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/


Agenda
● Various agile frameworks with various agile practices

● CAM uses Scrum and some other practices such as 
Continuous Integration

● Formally been using Scrum for about a year now

Framework

Agile 
framework

s
ASD, AUP, 

Crystal, 
DSDM

XP, FDD, 
Kanban, 
Scrum

11

https://en.wikipedia.org/wiki/Agile_software_development
https://www.mountaingoatsoftware.com/agile/scrum
https://www.mountaingoatsoftware.com/agile/scrum


Agenda
● Scrum Board etc: JIRA
● Two teams: 5-7 people, one team 3 people
● Iterations: 2 weeks 3 weeks
● Keep to the Scrum events: 

○ Sprint planning
○ Daily standup (timeboxed 15 minutes)
○ Sprint review (review work done)
○ Sprint retrospective (review the process)

● Planning 
○ Timeframe Functions => Work Packages => Epics
○ Backlog grooming & Planning poker
○ Epics with combination of Tasks & User stories
○ 1 story point ~ 0.5 day

Scrum Practices

12



Agenda
● Note: Scrum is a process

○ Every sprint is an opportunity to learn / tailor
● Light meeting load after sprint planning

○ Bad if you are in more than one team
● Developers and managers mostly positive

○ Project  level SE adopted certain aspects
● Proper estimation is hard!

○ The more we do it the better we seem to get
○ Each iteration provides quantitative feedback

● Somewhat hard before some "product" exists
○ Try to get Minimal Viable Product (MVP) ASAP

■ Early and workable better than late and perfect
○ Include planning / spec generation in sprint

● Still unsure how to include experimental / speculative work

Scrum Experiences

13



Agenda
● Continuous Integration: Jenkins

○ Automatically triggered on user commit
○ Automates unit and component tests
○ Automates integration tests
○ Automates build steps
○ Automates container image provisioning [WIP]

● Jekins / Github integration [WIP]
○ Automatically run unittest for all branches
○ Only allow PR to merge if tests pass

● Automatic stable branch creation
○ When integration tests pass for RTS, KAT-7, MeerKAT
○ See Version Control slides

Practices: Continuous Integration

14

https://jenkins.io


Agenda
● Invaluable, but

○ A lot of work!
● CI must be treated as a product, just like the system it is for
● Need to be draconian about keeping tests passing
● Ditto test coverage, both unit tests and integration/functional
● Leverage CI tools

○ Automatic binary package creation
○ Automatic documentation / report generation
○ Automatic deployment image creation, etc.

● Basis of continuous delivery / deployment
○ Test deployment process too!

Continuous Integration Experiences

15



Agenda

Development Environment

16



Agenda
● Virtualisation: Proxmox

○ considering moving to LXD in future
○ Moving to distributed VM block device store (Ceph RBD)
○ OS: Ubuntu Server 14.04 LTS, will track latest LTS

● Messaging Protocol: KATCP
○ Zero tooling needed for basic debugging

● Programming languages: 
○ Majority = Python 2.7+
○ GUI = Javascript (AngularJS framework v1)
○ some bit of C++ for device translators (with Python bindings using 

SIP)

● Databases: PostgreSQL & Redis (as in-memory store)
○ Monitored samples archive format: HDF

■ Moving to distribute object store (Ceph RADOS)
○ PostgreSQL Foreign Data Wrapper integrates archive

Environment

17

https://www.proxmox.com/en/
http://www.ubuntu.com/cloud/lxd
http://www.ubuntu.com/server
http://pythonhosted.org/katcp/
https://angularjs.org
https://www.riverbankcomputing.com/software/sip/roadmap
https://www.riverbankcomputing.com/software/sip/roadmap
https://www.postgresql.org
http://redis.io
https://www.hdfgroup.org


Agenda
● Software Configuration Management: Git

● Repository: github

● General workflow: All work done on git branches
○ Merge to up stream (e.g. master) branch via pull request
○ One or more persons review the changes in the pull request
○ Only merge after successful (approved) review
○ New github features make this easier to enforce

● Branch types:
○ master: bleeding edge of all merged development
○ stable: likely to work bleeding edge of all merged development
○ release: version as deployed to an instrument

■ hotfix: Fixes based on release branch
○ feature: long lived development effort kept out of master
○ user: short lived, workhorse branch type for most work

Version Control

18

https://git-scm.com
https://github.com


Agenda
● Git + github + modified gitflow works well for us

○ Much better than svn before

● Need to enforce use of VCS for all running code
○ NEVER leave uncommitted revisions running

■ Even for experimental fixes -> branches are cheap!
● Never leave uncommitted changes around

○ VCS is software change control!

● Git tags provides strong mechanism for release control
○ Properly using them is WIP

Version Control Experiences

19



Agenda
● Automatically kicked off by Jenkins when all tests pass

● Python Wheels are build for individual Python packages

● Debian packages for final software components [WIP]

● Packages uploaded to local repos
○ Using aptly [WIP] to manage repos for multiple releases / 

branches

● For formal version, software packages are git tagged
○ manual process
○ we use katversion

● Future plan: Automatically build fully functional and qualified 
container images

Build Procedure

20

http://pythonwheels.com
https://github.com/jordansissel/fpm
https://github.com/jordansissel/fpm
https://pypi.python.org/pypi/katversion/0.6


Agenda

● Unit Testing: Python nose

● Component Testing: Python nose and mock

● Integrated CAM Testing: AQF
○ AQF = Automated Qualification Framework
○ AQF is a CAM implementation (nose based)
○ AQF allows integration tests to be written and tagged with the set of 

CAM verification requirements it implements
○ AQF produces a report with the result of all the integration tests (i.e. 

compliance of CAM towards its requirements)
○ Management really likes this

Testing & Integration

21

http://nose.readthedocs.io/en/latest/
http://nose.readthedocs.io/en/latest/
https://pypi.python.org/pypi/mock


Agenda

● Jenkins automatically runs:
○ both unit and component tests when a pull request is merged into 

master
○ integrated CAM tests daily against a fully simulated system (only the 

auto tests, not ones requiring demonstration)
○ Creating of stable branch if all system's integration tests pass

● Automated creation of Jenkins slaves

● Docker works very well for creating temporary test execution 
environments

Testing & Integration

22

https://www.docker.com


Agenda

● CAM Qualification Testing
○ Formal qualification testing by using the AQF 
○ Includes demonstration tests with assistance provided by the AQF
○ Performed together with representative (usually System Engineering)
○ Performed on a fully simulated system (i.e. a virtual Karoo)

● CAM Acceptance Testing
○ Same as CAM Qualification Testing with a few unique tests
○ Performed in the Karoo on the deployed CAM subsystem with all 

other real subsystems

● Note good reuse of software integration tests + AQF for:
○ Day to day sanity testing
○ Continuous Integration
○ Qualification + Acceptance testing

Testing & Integration

23



Agenda

● Have simulator for every device/subsystem control interface

● Absolutely 100% invaluable
○ CAM Development before hardware / subsystems are ready
○ Day to day development / testing
○ Simulating error conditions
○ Integration testing
○ Demos
○ Interface clarification / development

● Even a very simple simulator can be highly useful
○ Most MeerKAT simulators use generic simulator library
○ Extended for more detailed simulators as required, eg:

■ MeerKAT AP simulator models antenna physics
■ CBF simulator can produce very fake science data

Device Simulators

24



Agenda
● Legacy in-house deployment system that works

○ Question of timing (2011)
○ we’ve started to play around with Ansible

● Based on the Python fabric library
○ Use SSH based for application deployment or systems 

administration tasks

● Handles provisioning and software deployment

● Local pypi and apt repositories are used to speed up 
installation

● Aiming to deploy (or be deployable) monthly
○ Aims to be single-click deploy

Deployment

25

https://www.ansible.com
http://www.fabfile.org


Agenda
● Life without automated deployment is not good

● Deployment should be routine and regular
○ Easy to know what changed, Smaller changes 
○ Quicker feedback
○ Better Change control

■ Can roll up / formalise hot fixes on short time scale

● Design for deployment
○ Support from CI
○ Support from virtualisation
○ Eliminate fear

● Remains non trivial

Deployment Experiences

26



Agenda
● Messaging app: Slack

○ excellent integration with popular developer tools

● Developer machines:
○ dedicated development servers shared between developers
○ run dedicated containers for each developer
○ quick to deploy and destroy

● Code Analysis: Pylint
○ check against PEP8 standard
○ automatically run by Jenkins

● Code Coverage: coverage.py
○ not run automatically
○ done if there is a specific need or concern

● Computing Monitoring System: Ganglia

Other tools

27

https://slack.com
https://www.pylint.org
https://coverage.readthedocs.io
http://ganglia.info


Agenda

GUI Development

28



Agenda
● Handled relatively informal

● Employed a “MeerKAT Telescope Operations Interface 
Control Document” (OICD) to capture user interface 
requirements

● UI requirements consist mainly of content descriptions and 
mockups of the required displays.

● Bi-monthly meetings were held with the relevant 
stakeholders (Operators, Commissioners, Engineers) to 
refine the OICD

● After few weeks the meetings became “live demo” sessions 
during which the displays were further discussed and refined

Operator UI Development

29



Agenda
● Web Application

● Backend: Python Tornado
○ KATCP library uses Tornado event loop too

● Frontend: Javascript AngularJS v1

● Connections:
○ Monitoring: websocket
○ Control: RESTful API

● Security: nothing fancy
○ Basic Authentication (hashed password)
○ Role based Authorisation (session tokens)

● For more detail see [2]

UI Technology

30

http://www.tornadoweb.org
https://angularjs.org
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069


AgendaUI Example (gif)

31



Agenda
● Traditional Control System toolkits (e.g. Boy, CSS) not 

suited
○ High-level workflow based UI
○ Low level dials and knobs not that useful for telescope

■ Basic sensor displays + CLI control keeps engineers 
happy

● GUI implementation nominally "custom" but
○ Leverages widely used web frontend technologies
○ Wealth of JS libraries / widgets etc available
○ Easy to develop "custom widgets"

● Deployment and management advantages inherent to web 
technologies

UI Technology Experiences

32



Questions?

33



Agenda

Documentation

34



Agenda
● Each software component has a:

○ Specification Record: Captures requirements addressed by the 
component

○ Design Record: Captures the detailed design of the component
○ API Description: Description of the classes, methods and attributes 

of the software component.

● Always available on-line

● Written in a markup language called reStructuredText
○ Documentation for Classes, Methods and Attributes are also written 

in same markup in the source code

● Compiled using Python Sphinx
○ automatically generates the API Description by pulling in the 

documentation from the source code

Documentation

35

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/


Agenda
[1]  CAM Development and Qualification Plan, Document Number: 
M1500-0000-001, Rev 5.

[2]  The MeerKAT Graphical User Interface Technology Stack, ICALEPCS 
2015, Theuns Alberts, Francois Joubert, online. 

References

36

http://icalepcs.synchrotron.org.au/talks/thhc3o01_talk.pdf

