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Agenda
● Project split into a set of Array Releases [1]

○ Similar to SKA Array Assemblies

● CAM Requirements grouped into “Timeframes”. How?
○ Functional Analysis:

■ Requirements ... allocated to ... Functions
○ Project Planning:

■ Functions ... required by ... Array Release X
○ CAM Requirements Grouping:

■ Reqs/Functions for Array Release X … grouped as … 
Timeframe X

MeerKAT Project Phases

4
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● CAM knows exactly the required functionality and what 

requirements to verify and qualify against for each Array 
Release - this defines our Development Cycles

● Each cycle allows for:
○ Requirements review
○ Design review and baseline
○ Qualification baseline

● Do not overlook the iterative nature and benefits thereof 
even for such large cycles at a high level of the project plan.
○ but smaller is better
○ RTS system suffered from spurious requirements

Development Cycles
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● Do not overlook the iterative nature and benefits thereof 

even for such large cycles at a high level of the project plan.
○ But smaller is better!

● RTS system had spurious requirements
○ Delayed rework of KAT-7 -> MeerKAT architecture
○ Wasted CAM dev time building MeerKAT-like features on 

KAT-7 architecture
○ Wasted correlator dev time trying to "look" like MeerKAT

● Commissioners not included early enough
○ Have incredible tacit information about early priorities

Development Experiences
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● Shorter SE cycles for software/gateware than hardware

● Be willing to modify system requirements 
○ For each cycle
○ On the basis of previous cycle(s) telescope user input 
○ Get buy-in from top level of project / SE 

● Also: Ensure precise harmonization of technical terms used 
by subsystems as design progresses.

● Get minimal running prototype ASAP
○ Ties in with agile

● Idea: commissioners are "customers" in early phases
○ Commissioners should have clout
○ SE / top level project facilitate

Development Recommendations

8



Agenda

Development Process
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● An umbrella term for a set of methods and practices based 

on some core principles.

● Agile is not a silver bullet
○ can fail just like any other non-Agile project
○ it will allow you to fail faster though

● Major benefit is the quick feedback due to the iterative 
development approach

● New? Take small steps, transition gradually and allow time

“You are Agile when you know enough about the practices to 
adapt them to the reality of your own specific situation.”

Agile
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Agenda
● Various agile frameworks with various agile practices

● CAM uses Scrum and some other practices such as 
Continuous Integration

● Formally been using Scrum for about a year now

Framework

Agile 
framework

s
ASD, AUP, 

Crystal, 
DSDM

XP, FDD, 
Kanban, 
Scrum
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https://en.wikipedia.org/wiki/Agile_software_development
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● Scrum Board etc: JIRA
● Two teams: 5-7 people, one team 3 people
● Iterations: 2 weeks 3 weeks
● Keep to the Scrum events: 

○ Sprint planning
○ Daily standup (timeboxed 15 minutes)
○ Sprint review (review work done)
○ Sprint retrospective (review the process)

● Planning 
○ Timeframe Functions => Work Packages => Epics
○ Backlog grooming & Planning poker
○ Epics with combination of Tasks & User stories
○ 1 story point ~ 0.5 day

Scrum Practices
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● Note: Scrum is a process

○ Every sprint is an opportunity to learn / tailor
● Light meeting load after sprint planning

○ Bad if you are in more than one team
● Developers and managers mostly positive

○ Project  level SE adopted certain aspects
● Proper estimation is hard!

○ The more we do it the better we seem to get
○ Each iteration provides quantitative feedback

● Somewhat hard before some "product" exists
○ Try to get Minimal Viable Product (MVP) ASAP

■ Early and workable better than late and perfect
○ Include planning / spec generation in sprint

● Still unsure how to include experimental / speculative work

Scrum Experiences
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● Continuous Integration: Jenkins

○ Automatically triggered on user commit
○ Automates unit and component tests
○ Automates integration tests
○ Automates build steps
○ Automates container image provisioning [WIP]

● Jekins / Github integration [WIP]
○ Automatically run unittest for all branches
○ Only allow PR to merge if tests pass

● Automatic stable branch creation
○ When integration tests pass for RTS, KAT-7, MeerKAT
○ See Version Control slides

Practices: Continuous Integration
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https://jenkins.io
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● Invaluable, but

○ A lot of work!
● CI must be treated as a product, just like the system it is for
● Need to be draconian about keeping tests passing
● Ditto test coverage, both unit tests and integration/functional
● Leverage CI tools

○ Automatic binary package creation
○ Automatic documentation / report generation
○ Automatic deployment image creation, etc.

● Basis of continuous delivery / deployment
○ Test deployment process too!

Continuous Integration Experiences
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Development Environment
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● Virtualisation: Proxmox

○ considering moving to LXD in future
○ Moving to distributed VM block device store (Ceph RBD)
○ OS: Ubuntu Server 14.04 LTS, will track latest LTS

● Messaging Protocol: KATCP
○ Zero tooling needed for basic debugging

● Programming languages: 
○ Majority = Python 2.7+
○ GUI = Javascript (AngularJS framework v1)
○ some bit of C++ for device translators (with Python bindings using 

SIP)

● Databases: PostgreSQL & Redis (as in-memory store)
○ Monitored samples archive format: HDF

■ Moving to distribute object store (Ceph RADOS)
○ PostgreSQL Foreign Data Wrapper integrates archive

Environment

17

https://www.proxmox.com/en/
http://www.ubuntu.com/cloud/lxd
http://www.ubuntu.com/server
http://pythonhosted.org/katcp/
https://angularjs.org
https://www.riverbankcomputing.com/software/sip/roadmap
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● Software Configuration Management: Git

● Repository: github

● General workflow: All work done on git branches
○ Merge to up stream (e.g. master) branch via pull request
○ One or more persons review the changes in the pull request
○ Only merge after successful (approved) review
○ New github features make this easier to enforce

● Branch types:
○ master: bleeding edge of all merged development
○ stable: likely to work bleeding edge of all merged development
○ release: version as deployed to an instrument

■ hotfix: Fixes based on release branch
○ feature: long lived development effort kept out of master
○ user: short lived, workhorse branch type for most work

Version Control
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https://git-scm.com
https://github.com
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● Git + github + modified gitflow works well for us

○ Much better than svn before

● Need to enforce use of VCS for all running code
○ NEVER leave uncommitted revisions running

■ Even for experimental fixes -> branches are cheap!
● Never leave uncommitted changes around

○ VCS is software change control!

● Git tags provides strong mechanism for release control
○ Properly using them is WIP

Version Control Experiences
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● Automatically kicked off by Jenkins when all tests pass

● Python Wheels are build for individual Python packages

● Debian packages for final software components [WIP]

● Packages uploaded to local repos
○ Using aptly [WIP] to manage repos for multiple releases / 

branches

● For formal version, software packages are git tagged
○ manual process
○ we use katversion

● Future plan: Automatically build fully functional and qualified 
container images

Build Procedure
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http://pythonwheels.com
https://github.com/jordansissel/fpm
https://github.com/jordansissel/fpm
https://pypi.python.org/pypi/katversion/0.6
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● Unit Testing: Python nose

● Component Testing: Python nose and mock

● Integrated CAM Testing: AQF
○ AQF = Automated Qualification Framework
○ AQF is a CAM implementation (nose based)
○ AQF allows integration tests to be written and tagged with the set of 

CAM verification requirements it implements
○ AQF produces a report with the result of all the integration tests (i.e. 

compliance of CAM towards its requirements)
○ Management really likes this

Testing & Integration
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http://nose.readthedocs.io/en/latest/
http://nose.readthedocs.io/en/latest/
https://pypi.python.org/pypi/mock
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● Jenkins automatically runs:
○ both unit and component tests when a pull request is merged into 

master
○ integrated CAM tests daily against a fully simulated system (only the 

auto tests, not ones requiring demonstration)
○ Creating of stable branch if all system's integration tests pass

● Automated creation of Jenkins slaves

● Docker works very well for creating temporary test execution 
environments

Testing & Integration
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https://www.docker.com
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● CAM Qualification Testing
○ Formal qualification testing by using the AQF 
○ Includes demonstration tests with assistance provided by the AQF
○ Performed together with representative (usually System Engineering)
○ Performed on a fully simulated system (i.e. a virtual Karoo)

● CAM Acceptance Testing
○ Same as CAM Qualification Testing with a few unique tests
○ Performed in the Karoo on the deployed CAM subsystem with all 

other real subsystems

● Note good reuse of software integration tests + AQF for:
○ Day to day sanity testing
○ Continuous Integration
○ Qualification + Acceptance testing

Testing & Integration
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● Have simulator for every device/subsystem control interface

● Absolutely 100% invaluable
○ CAM Development before hardware / subsystems are ready
○ Day to day development / testing
○ Simulating error conditions
○ Integration testing
○ Demos
○ Interface clarification / development

● Even a very simple simulator can be highly useful
○ Most MeerKAT simulators use generic simulator library
○ Extended for more detailed simulators as required, eg:

■ MeerKAT AP simulator models antenna physics
■ CBF simulator can produce very fake science data

Device Simulators
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● Legacy in-house deployment system that works

○ Question of timing (2011)
○ we’ve started to play around with Ansible

● Based on the Python fabric library
○ Use SSH based for application deployment or systems 

administration tasks

● Handles provisioning and software deployment

● Local pypi and apt repositories are used to speed up 
installation

● Aiming to deploy (or be deployable) monthly
○ Aims to be single-click deploy

Deployment
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https://www.ansible.com
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● Life without automated deployment is not good

● Deployment should be routine and regular
○ Easy to know what changed, Smaller changes 
○ Quicker feedback
○ Better Change control

■ Can roll up / formalise hot fixes on short time scale

● Design for deployment
○ Support from CI
○ Support from virtualisation
○ Eliminate fear

● Remains non trivial

Deployment Experiences
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● Messaging app: Slack

○ excellent integration with popular developer tools

● Developer machines:
○ dedicated development servers shared between developers
○ run dedicated containers for each developer
○ quick to deploy and destroy

● Code Analysis: Pylint
○ check against PEP8 standard
○ automatically run by Jenkins

● Code Coverage: coverage.py
○ not run automatically
○ done if there is a specific need or concern

● Computing Monitoring System: Ganglia

Other tools
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https://slack.com
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GUI Development
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● Handled relatively informal

● Employed a “MeerKAT Telescope Operations Interface 
Control Document” (OICD) to capture user interface 
requirements

● UI requirements consist mainly of content descriptions and 
mockups of the required displays.

● Bi-monthly meetings were held with the relevant 
stakeholders (Operators, Commissioners, Engineers) to 
refine the OICD

● After few weeks the meetings became “live demo” sessions 
during which the displays were further discussed and refined

Operator UI Development
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● Web Application

● Backend: Python Tornado
○ KATCP library uses Tornado event loop too

● Frontend: Javascript AngularJS v1

● Connections:
○ Monitoring: websocket
○ Control: RESTful API

● Security: nothing fancy
○ Basic Authentication (hashed password)
○ Role based Authorisation (session tokens)

● For more detail see [2]

UI Technology
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http://www.tornadoweb.org
https://angularjs.org
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069


AgendaUI Example (gif)
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● Traditional Control System toolkits (e.g. Boy, CSS) not 

suited
○ High-level workflow based UI
○ Low level dials and knobs not that useful for telescope

■ Basic sensor displays + CLI control keeps engineers 
happy

● GUI implementation nominally "custom" but
○ Leverages widely used web frontend technologies
○ Wealth of JS libraries / widgets etc available
○ Easy to develop "custom widgets"

● Deployment and management advantages inherent to web 
technologies

UI Technology Experiences
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● Each software component has a:

○ Specification Record: Captures requirements addressed by the 
component

○ Design Record: Captures the detailed design of the component
○ API Description: Description of the classes, methods and attributes 

of the software component.

● Always available on-line

● Written in a markup language called reStructuredText
○ Documentation for Classes, Methods and Attributes are also written 

in same markup in the source code

● Compiled using Python Sphinx
○ automatically generates the API Description by pulling in the 

documentation from the source code

Documentation
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http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/
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[1]  CAM Development and Qualification Plan, Document Number: 
M1500-0000-001, Rev 5.

[2]  The MeerKAT Graphical User Interface Technology Stack, ICALEPCS 
2015, Theuns Alberts, Francois Joubert, online. 
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