
ALMA Software Process
Experiences

Alan Bridger, UKATC/STFC
OBSMGT lead;

Lead for ALMA Observation Preparation 2002-

Outline

• Background Context
• Tools
• Day 1 process, its problems and what we did

about it
• Main process used in construction
• Current process evolution
• Some lessons

Background Context: 1
•  ALMA Construction project began June 2002 –

o  note construction for ALMA encompassed end of PDR design

•  Europe/North America 50/50 (ESO/NRAO)
•  8 “Integrated Product Teams” (IPTs): Science, Systems

Engineering, Antennas, Front End, Back End, Correlator, Site,
… and Computing

•  Construction originally 2002-2011, “first science” 2007, “full
science” 2011.

•  Re-baselining 2005
o  Number antennas and receiver bands reduced
o  Construction extended to 2013
o  First (early) science proposal call before 1st April 2011
o  Revised schedule was kept...

•  East Asia (initially Japan) joined 2004/5, adding back reciever
bands and the Compact Array, and the ACA IPT

Background Context: 2
•  Computing comprised:

o  Software Engineering
o  ALMA Common Software
o  Archive
o  Control
o  Correlator (Software interface to)
o  Proposal and Observation Preparation
o  Telescope Calibration
o  Pipeline
o  Integration and Test
o  Observatory Operations (added in 2005)
o  ACA Correlator (2005)

•  Has evolved since, of key interest we now have
o  Integration and Test became Integration and Release Management
o  and expand to Software Engineering and Quality Management

Background Context: 3

•  Development spread over 2 continents (then 3 then 4)
and 9 sites (then ~11-12…I think). Approx 50. FTE and
approx. 70-80 people.

•  Many subsystems wholly within one executive
•  But several shared (ITS, ACS, Pipeline) and Japan

added FTE to several
•  So highly distributed, heterogeneous groups, different

development cultures
•  Communication & internal interfaces (ICDs) were big

issues

Tools: 1
Communication:
•  Telecons and finally videocons
•  Face to face meetings: leads twice per year, other ad hoc, plus couple of

“all-hands” (dropped as too costly)
•  Yahoo Messenger (finally moving to Hipchat)
•  Twiki
•  Skype (later)

Documentation & Requirements Management:
•  Twiki (for us – documents attach in structured approach)
•  Sitescape Forum (used as little as possible by us)
•  DOORS (for a while – we were shielded)

Tools: 2
Development:
•  Java, C++, python, UML, XML, (Javascript)
•  Eclipse, emacs
•  CVS -> SVN (-> git, soon)
•  Modified ESO VLT Build system, combined with ant, later maven

•  ESO nightly build system (later integrated with/replaced by Jenkins)
•  Junit, cppunit, pyunit, integrated with ESO “TAT” system
•  Selenium, QFTest
•  doxygen
•  Remedy for a very short while, rapidly replaced by JIRA + JIRA

Agile

Day 1 Process

•  One major, one minor release per year.
•  Yearly planning of features to deliver

o  Adjusted at six-months

•  Subsystems deliver features to ITS who integrate, test &
release

•  In summary: failed…delivered subsystem code could take
months to integrate and significant effort on fixes - key issues:

o  Differing ICD interpretations
o  Failed delivery of “part-features”
o  Too many features

Function Based Teams & Other
improvements

•  Introduction (by UKATC!) of FBTs to help with first two issues:
o  Cross subsystem teams formed to tackle single functions
o  Work on goal acheivable in 4-8 weeks
o  Frequent meetings (usually 1-2 face to face)
o  Defined deliverable & report

•  Made significant improvement to the outcome of releases
•  cf. agile sprints

•  But 6 monthly releases still too much: too many features
o  Evolved towards releases every 4-6 weeks.
o  With clearer emphasis on developer tests

Process for key construction
stages/early operations

•  Annual planning with science
•  features required for 6-12 months + longer term

•  “Dot” releases every 4-6 weeks
o  Used by commissioning

•  3 Phase testing: Developer (unit tests + feature test, test team
(verification), science (validation)
o  Integrated tests – automated regression
o  Bug fixes during verification and validation

•  Selected releases -> accepted releases for operations deployment
o  Further testing, user, end-to-end, formal acceptance, SCCB-managed

•  Heavy use of/reliance on JIRA(-agile)
o  Feature development/bug fixes
o  Science discussions for feature specification development
o  Formal patch requests
o  Formal change requests

Current Situation
•  Moving towards monthly releases, staggered by subsystems
•  Retain 3 Phase testing
•  Reduce number of accepted releases

•  Moving towards a continuous integration model and a git-like
approach to merging features (prior to switching to git)

•  Features not passing verification in 1-week period dropped

Some concerns about this:
•  Dropping features will sometimes simply not be possible
•  Staggered subsystems -> concerns about dependencies

Some Lessons: 1

•  Six-monthly “big-bang” integrations bad, certainly in context of
widely distributed teams
o  Concerns about my perception of SKA release plans

•  Control subsystem had no requirement to provide a simulator,
so it didn’t
o  This was a really major omission
o  One was provided late built “in spare time”

Some Lessons: 2

•  JIRA good! I can’t live (my ALMA life) without it.
o  Do integrate it with the repository

•  CI is not only Continuous Integration, it is also Continuous
Improvement:
o  Don’t change for change sake, but always evaluate your processes,

what works in construction may not suit operations.

•  Communication is vital: messaging, conference calls, face to
face, wikis, plus of course formal.
o  Do whatever it takes to talk to each other!
o  Early use of yahoo was not a “management” choice – it was developers/

leads
o  Always remember: communication is actually hard

