

SKA Observing Control View

Introduction
This document is an attempt to propose an architecture which marries the top level observation

management view of the SKA, with the hierarchical Tango control system that incorporates the LMC

systems provides by the consortia. The former discusses observations in terms of Scheduling Blocks

and Scans, and the latter in terms of Tango commands and attributes. This document aims to propose

a simple, flexible interface based on a common state machine used by all systems. The interface is

narrow, which means it should be fairly easy to understand and diagnose. The complexity is in

sub-system (LMC level) configurations that are basically structured documents (JSON or XML) that are

derived from the observation definitions created by observers. The intention is that TM receives these

configurations from Observation Management and passes them with relatively little interpretation to

the underlying sub-systems.

The document is based on JAC systems and some discussions in Pune in the TM face to face, with

modifications based on meetings and discussions since then.

Assumptions

The fundamental assumption in this document is that SKA data taking will be discontinuous.

Observations will be described by scheduling blocks, which are made up of scans, during which the

science data is taken. This is the design proposed by Observation Management and the Operational

Concepts document and it ensures that data isn’t taken when the system isn’t in a well defined

configuration specified by the observation management system.

However, this is clearly a design decision and the clear alternative is to take data continuously and flag

data that should be dropped by a downstream system. The design doesn’t preclude this, but the

assumption is that the data is dropped relatively close to source.

There is also some variations in the way some key terms are described. My interpretations of these

terms are below.

Scheduling Block

This is currently defined in the SKA Glossary as: “Scheduling Blocks are the indivisible executable units

of a project and contains all information necessary to execute a single observation. A scheduling block

may be stopped and cancelled but not paused and resumed.”

After discussion with the SKA Operations team, I believe that the last phrase “not paused and

resumed” in this context is better thought of “cannot be interrupted by another scheduling block and

continued at a later time”. However, it can be paused so some engineering adjustment can be made

and then continued or cancelled.

Scan

This is not defined in the SKA Glossary. However, the Operational Concepts Document effectively

defines it as “an atomic unit of execution during which the system configuration is fixed”.

Again, after discussing this with the operations team, I would prefer this to say that it is “an atomic

unit of execution during which data taking is normally continuous, but data taking can be briefly

paused for an operational reason”.

Sub-array

The SKA1-Mid Subarrays Resolution Team Report defines this as “a grouping which isolates a set of

resources to be controlled together to achieve a common end.” I feel this is a good definition, but in

the related notes they say that “Generally, receptors in the same subarray will have the same

(intended) pointing and delay centers”. They then go on and describe sub-arrays as not being the

schedulable entities, but instead defining “resource pools” as being those entities. I feel that this

changes the whole definition of sub-arrays and introduces a level of complexity that is not needed.

The complexity of sub-arrays is not controlling the system to do a diverse set of operations, it is in the

complexity of breaking the system into pieces and scheduling the pieces together. Hence, in this

report sub-arrays revert to the earlier definition in which they are a scheduling concept that can only

be changed at scheduling block boundaries. The system flexibility required by the sub-array report

can, I think, be handled by the configuration concept, where individual parts of the sub-array are

configured independently.

Both SKA telescopes will be controlled as a number of independent sub-arrays, and since they are

independent, it is almost meaningless to discuss the state of the telescope as a whole - the telescope

will be a union of the sub-arrays. However, it is likely that the telescope may frequently be configured

so that the vast majority of dishes are in a single sub-array, with the remaining few being in a small

engineering array, so it is understandable that the two concepts (Telescope state vs sub-array state)

may get confused. However, the rest of this document describes a system for controlling a single

sub-array - there is assumed to be a parallel system for each sub-array.

Scope

The scope of the control system described in this document is only the top level components that

participate in the observation down to, and including the top level control tasks in the LMCs.

“Participate in the observation” means that they handling the real-time dataflow and are expected to

be operate together to within a relatively small synchronisation. This excludes any components that

just are monitoring systems (e.g. weather) or process the data after significant delays (e.g. the SDP

image pipeline).

I see the control of an SKA MID sub-array during operations in terms of the following diagram.

Figure 1: TANGO devices for which this document is relevant. This structure is replicated each

sub-array

… and the control of an SKA LOW sub-array similarly:

INFRA, SaDT and parts of MeerKAT have been omitted from this diagram because they are not

commanded by the TM sequencer . These, and some SDP systems (e.g. LTA and DELIV) are passively 1

involved in the observations, but not actively - the only effect they will have is if there is a major fault

which causes the sub-array to transition to a non-operational state.

The CONFIG/SCAN control derives from the top level observational view of the system defined by

OBSMGT. In implementing this, I propose it will require each TANGO device below the Sequencer

device in the above diagram to implement a uniform control state machine mechanism described

below. Since it is a hierarchy, intermediate systems are both a controlled sub-system for a higher level

device, and a controlling system for lower level devices in the hierarchy. I will try and ensure this

context is clear below.

Note that since all observation control will be done at the sub-array level, it is assumed that the

hierarchy of the controlled sub-systems distinguishes between sub-array contexts. I assume the

design pattern for this is to model the control of a sub-array as a TANGO class, and implement the

control in different devices for each sub-array. Whether the devices for all the sub-arrays are in one

TANGO device server (i.e. one process) or in multiple device servers may be implementation

dependent. However, for the purposes of the exercise, the above diagram (and all the discussion

below), should be assumed to be repeated once for every sub-array, and there be an implementation

defined fixed number of sub-arrays (currently 16) and some (actually most) sub-arrays contain no

controlled hardware.

1 Unless we adopt some form of software defined networking (SDN) for control of SaDT components during the
observation, but at the moment any form of SDN is confined to CSP or SDP.

Description of Observing Control

Observing Control State Diagram

Each TANGO device that abides by the CONFIG/SCAN protocol will have an enumerated attribute

called OBS_STATE.

Attribute Name Attribute Type Description Access

OBS_STATE Enum One of Idle,
Configuring, Ready,
Scanning, Paused,
Aborted or Fault

Read/Write

The observing state diagram is described below. Specific transitions of OBS_STATE can be triggered

either internally or externally (but not both). The states and state transitions are described in the next

two sections.

Figure 2: Observing Control state transition diagram

Description of Observing Control States

State Description

Idle Sub-array is ready to observe, but is in an undefined configuration.

Configuring System is being prepared for a specific scan. On entry to the state no
assumptions can be made about the previous conditions. It is a transient state
and will automatically transition to Ready when it completes normally.

Ready System is fully prepared for the next scan, but not actually taking data or
moving in the observed coordinate system (i.e. it may be tracking, but not
moving relative to the coordinate system).

Scanning System is taking data and, if needed, and all components are synchronously
moving in the observed coordinate system. Any changes to the sub-systems are
happening automatically

Paused System is fully prepared for the next observation, but not actually taking data or

moving in the observed system. Similar to Ready state.

Aborted System has had previous state interrupted by controller and is in an undefined
state.

Fault System has detected an internal error making it is impossible to remain in the
previous state.

Description of Observing Control State Transitions

With the exception of “Reconfigure”, all externally triggered state transitions are generated by a

TANGO command of the same name. The design intention is that the commands will be broadcast

using the Tango “Group” mechanism, so all external transitions will be triggered across the system

nearly simultaneously.

All commands will return a success or failure (which will typically be signified by throwing an

exception in the client). If a sub-system command returns a failure then the controlling system will

sends an “Abort” command to any controlled sub-system before itself returning a failure. (Limited

retry’s are low-level responsibilities).

Transition Description

Configure There are two possibilities, both of which should be handled:
1. Command has a single integer parameter, which is a Scheduling

Block Identifier (SBI).
2. Command has a single string parameter, which is a JSON string

containing the configuration information. One of the items in the
JSON string will be the SBI. The JSON structure will be organised
hierarchically, and the system should ignore any elements that are
not relevant to it.

On receipt of this command the controlled system will:

1. Update OBS_STATE to Configuring
2. Fan out the Configure command to its controlled sub-systems,

including any sub-system configuration derived if the parameter
was a JSON string.

3. Do any processing required to prepare for the start of the
Scheduling Block.

4. Wait for all sub-systems to return.
5. Update any attributes required for synchronised start of the scan.
6. If all completes successfully, update OBS_STATE to Ready before

returning successfully to the caller (a Configured transition).

Configured This is an automatic transition after Configuring state has completed

successfully.

Reconfigure This is the only transition not triggered by a TANGO command. It is
triggered by a TANGO write_attributes() request to change a set of
configuration attributes exposed by the sub-system.

On receipt of this request the sub-system will:

1. Update OBS_STATE to Configuring
2. Fan out the the transition in the form of write_attributes

commands to its controlled sub-systems.
3. Do any processing required to prepare for the start of the

Scheduling Block.
4. Wait for all sub-systems to return.
5. Update any attributes required for synchronised start of the scan.
6. If all completes successfully, update OBS_STATE to Ready before

returning successfully to the caller (a Configured transition).

Scan Command has a parameter which indicates the time (TAI) at which the Scan
will start.

End Observation Command has no parameter. This is a transition to indicate the end of the
Scheduling Block. Sub-systems should transition to Idle , and may enter low
power mode after a suitable time.

Scan Complete This can be either an automatic or an externally triggered transition after
the Scanning state is completes normally. Typically, at top level only one
sub-system will automatically transition. The control system will then notify
all the other sub-systems that the scan is complete by invoking this
command.

Pause Command has a single parameter which indicates the time (TAI) at which
the scan should pause. As part of the transition the system should move to
a position where the observation could resume from where it would be at
that time. Pauses will not be triggered automatically, but will have to
ultimately triggered by an operator action.

Continue Command has a parameter which indicates the time (TAI) at which the Scan
will restart.

End Scan This command signifies that the scan has completed successfully, but
manually by operator action. Otherwise it is synonymous to Scan Complete

Abort Command has a single parameter and this is an asynchronous command
that can be sent at any time. System should immediately transition to the
Aborted state which is one in which the system is in a safe configuration
and not generating observational data. The parameter (which could be
optional) could indicate what level of safety is required - the two options
being:

1. as near as possible to the current configuration (default), or
2. as safe as possible given the current conditions.

Reset Command has no parameter. System should transition to Idle state.

Fatal Error This is an internally triggered transition which indicates the system cannot
continue with the current state transition, request or command. If a
controlling system detects this transition it should immediately send an
Abort transition to all other controlled sub-systems and transition to the
Error state.

Engineering Functionality

Most of the detail in this document deals with control of typical observations where operation is

automatic and controlled by a sub-array sequencer. In this case control will nearly always follow the

hierarchy shown in Figure 1. The only exception might be:

1. The sequencer might not automatically transition from one state to another - it may be

programmed to pause just before a scan, for example, so the operator can give a final check

before taking data.

2. The Pause state is only entered as a result of a manual operation. At this point the operator

might correct some minor setting before continuing.

However, during Engineering operations the control will largely not be automatic, and no such

assumptions apply. In particular, the following should be supported:

● All transitions can be done manually - a typical implementation would be a button that sends

the appropriate command to the sequencer, where it would be fanned out to the

sub-systems.

● Automatic generation of a Scheduling Block Identifier. When the engineer initiates the

Configure transition she is basically switching the system out of standby mode ready for

operations. This might involve pressing a “Ready” button, which will trigger the sequencer to

configure the system with a generated identifier.

● Any TANGO device can be manipulated directly at any time. Engineering will often be done via

engineering screens that communicate directly to low-level TANGO devices. Nothing should

prevent this low level control. Typically this will be done when the system is in Ready state.

Correlation with other global views and similar concepts

The table below tries to correlate the Observing Control State of a sub-array with various other

concepts.

Sub-Array
Availability

Operational
State

User
perception(?)

Accounting
Category

Observing
Control State

TANGO
State?

Operational Science
Operations

Science
observation

Setup Configuring MOVING

Ready ON

Science Scanning RUNNING

Calibration
observation

Setup Configuring MOVING

Ready ON

Calibration Scanning RUNNING

Observation
overheads

Other(?) Idle STANDBY

Paused ON

Aborted STANDBY

System Level
Engineering

Engineering Engineering Configuring MOVING

Ready ON

Scanning RUNNING

Idle STANDBY

Paused ON

Aborted STANDBY

Not
Operational

Sub-array
reconfiguration

Engineering Engineering Undefined UNKNOWN

Sub-array with
no hardware

Irrelevant
concept(?)

None/Other Undefined UNKNOWN

Weather Weather Weather Idle Any

Utility Fault Fault Idle OFF

Component
Level
Engineering

Engineering Engineering Idle Any

System Fault Fault Fault Fault FAULT

Interaction with the TANGO Device State

Note that the TANGO state column in the above table is just a (potentially provocative) suggestion.

The assignments may depend on technical details, such as the alarm behavior in MOVING, RUNNING

and STANDBY and FAULT states. It is also assumed that the device automatically transitions through

the TANGO INIT state to the Idle /STANDBY state.

Synchronisation
This could be implemented in a number of ways. A simple proposal would be for each system to have

an attribute that is set before the completion of any “Configured” or “Paused” transition. This would

indicate a minimum time needed to start scanning. For example:

Attribute Name Attribute Type Description Access

SCAN_DELAY Double Minimum time in
seconds for
sub-system to
transition from current
state to scanning. Only
defined when
OBS_STATE is Paused
or Ready. Negative
values are undefined.

Read only

Any controlling system will return the maximum value returned from any controlled sub-system. The

sequencer will use this as a guide to set the start time for the next scan.

Aggregation
Aggregation has been a topic of much discussion, since the right thing to do when aggregating is often

context sensitive.

Control Aggregation

The proposed control aggregation strategy is defined above - any low level fault that stops an

observation continuing should be propagated to top level and all other controlled sub-systems

aborted. This however, means that the barrier to declare a fault condition is high.

The use of this control aggregation strategy is only mandated to the levels described in the first

(Overview) diagram, but individual elements could propagate it further if they see it is warranted.

Monitoring Aggregation

Any form of monitoring aggregation will not have any direct effect on an observation in progress - this

will only happen as a result of a change in the observing state. However, developers should generate

summary attributes and summary screens of their sub-systems showing the important information.

Problems with the underlying sub-systems that need the attention of the operator should be signalled

by the alarm system. Alarms should conform to the IEC 62682 standard. Controlling systems should

propagate any alarms in the controlled sub-systems through a suitable alarm aggregation TANGO

device. This should, at minimum, indicate whether there are any sub-system alarms, and whether

there are any unacknowledged sub-system alarms.

TODO: This could either just be through a 3 level enum (NO_ALARMS, ACKNOWLEDGED_ALARMS,

UNACKNOWLEGED_ALARMS) or something more complicated.

Component level states
In this context, I consider that components are low level systems which are either:

● beneath the control hierarchy described above, or

● don’t participate in it (i.e. pure monitoring systems like weather stations or SaDT).

The current “SKA Control Model” document describes many potential component level states - the

difference between that document and this is that it tries to define how to aggregate these

component level states and I propose that they are largely not aggregated - except to the level

described above. The aggregation is largely through the monitoring and display hierarchy, not the

control hierarchy described above.

However, elements can do their own Engineering Control aggregation to the level that they consider

appropriate, but that this does not not propagate up into Telescope Manager. Engineering level

functionality can be done through engineering level devices.

Note that it may also make sense to aggregate alarms both by sub-array, and by element. (i.e. there is

a top-level DISH alarm aggregation for all dishes with its own drill down, and an aggregation by

sub-array).

Appendix. Background Information

SKA MID Control Hierarchy

The SKA MID Control Hierarchy from a System Engineering domain point of view is represented as

follows:

It is important to note that these boxes don’t really represent anything specific yet from a control

functionality viewpoint, they are just names. Also, the following top level states were defined in a

draft document circulated by the MID States and Modes RT.

SKA Low Control Hierarchy

The SKA LOW Control Hierarchy from a System Engineering domain point of view is represented as

follows:

SKA Observatory of sub-array states

The following state set of state definitions were used as input to the States and Modes resolution

team.

State Definition

Operational Observing At least one sub-array is in the SO_Calibrating or
SO_Observing mode (see sub-array modes for definitions),
for the purpose of science observations.

Standby System is functionally available for science observations, but
is not used for observing. Sub-arrays could be in SO_Standby
or SO_Configuring mode, or no sub-arrays could be
configured.

Not Operational Weather Observing is not possible due to poor weather (e.g. wind
stow conditions).

Utility Observing is not possible due to utility problems (e.g. power
failure).

Engineering /
Maintenance

System is not available for any science observations, due to
upgrades, scheduled maintenance, off-line calibration,
software updates or testing.

System Fault System is not available for any science observations, due to a
critical system fault.

