
 

 

SKA Observing Control View 

Introduction 
This document is an attempt to propose an architecture which marries the top level observation 

management view of the SKA, with the hierarchical Tango control system that incorporates the LMC 

systems provides by the consortia. The former discusses observations in terms of Scheduling Blocks 

and Scans, and the latter in terms of Tango commands and attributes. This document aims to propose 

a simple, flexible interface based on a common state machine used by all systems. The interface is 

narrow, which means it should be fairly easy to understand and diagnose. The complexity is in 

sub-system (LMC level) configurations that are basically structured documents (JSON or XML) that are 

derived from the observation definitions created by observers. The intention is that TM receives these 

configurations from Observation Management and passes them with relatively little interpretation to 

the underlying sub-systems.  

The document is based on JAC systems and some discussions in Pune in the TM face to face, with 

modifications based on meetings and discussions since then. 

Assumptions 

The fundamental assumption in this document is that SKA data taking will be discontinuous. 

Observations will be described by scheduling blocks, which are made up of scans, during which the 

science data is taken. This is the design proposed by Observation Management and the Operational 

Concepts document and it ensures that data isn’t taken when the system isn’t in a well defined 

configuration specified by the observation management system.  

However, this is clearly a design decision and the clear alternative is to take data continuously and flag 

data that should be dropped by a downstream system. The design doesn’t preclude this, but the 

assumption is that the data is dropped relatively close to source. 

There is also some variations in the way some key terms are described. My interpretations of these 

terms are below. 

Scheduling Block 

This is currently defined in the SKA Glossary as: “Scheduling Blocks are the indivisible executable units 

of a project and contains all information necessary to execute a single observation. A scheduling block 

may be stopped and cancelled but not paused and resumed.” 



After discussion with the SKA Operations team, I believe that the last phrase “not paused and 

resumed” in this context is better thought of “cannot be interrupted by another scheduling block and 

continued at a later time”. However, it can be paused so some engineering adjustment can be made 

and then continued or cancelled. 

Scan 

This is not defined in the SKA Glossary. However, the Operational Concepts Document effectively 

defines it as “an atomic unit of execution during which the system configuration is fixed”. 

Again, after discussing this with the operations team, I would prefer this to say that it is “an atomic 

unit of execution during which data taking is normally continuous, but data taking can be briefly 

paused for an operational reason”. 

Sub-array 

The SKA1-Mid Subarrays Resolution Team Report defines this as “a grouping which isolates a set of 

resources to be controlled together to achieve a common end.” I feel this is a good definition, but in 

the related notes they say that “Generally, receptors in the same subarray will have the same 

(intended) pointing and delay centers”. They then go on and describe sub-arrays as not being the 

schedulable entities, but instead defining “resource pools” as being those entities. I feel that this 

changes the whole definition of sub-arrays and introduces a level of complexity that is not needed. 

The complexity of sub-arrays is not controlling the system to do a diverse set of operations, it is in the 

complexity of breaking the system into pieces and scheduling the pieces together. Hence, in this 

report sub-arrays revert to the earlier definition in which they are a scheduling concept that can only 

be changed at scheduling block boundaries. The system flexibility required by the sub-array report 

can, I think, be handled by the configuration concept, where individual parts of the sub-array are 

configured independently. 

Both SKA telescopes will be controlled as a number of independent sub-arrays, and since they are 

independent, it is almost meaningless to discuss the state of the telescope as a whole - the telescope 

will be a union of the sub-arrays. However, it is likely that the telescope may frequently be configured 

so that the vast majority of dishes are in a single sub-array, with the remaining few being in a small 

engineering array, so it is understandable that the two concepts (Telescope state vs sub-array state) 

may get confused. However, the rest of this document describes a system for controlling a single 

sub-array - there is assumed to be a parallel system for each sub-array. 

Scope 

The scope of the control system described in this document is only the top level components that 

participate in the observation down to, and including the top level control tasks in the LMCs. 

“Participate in the observation” means that they handling the real-time dataflow and are expected to 

be operate together to within a relatively small synchronisation. This excludes any components that 



just are monitoring systems (e.g. weather) or process the data after significant delays (e.g. the SDP 

image pipeline).  

I see the control of an SKA MID sub-array during operations in terms of the following diagram.  

 

Figure 1: TANGO devices for which this document is relevant. This structure is replicated each 

sub-array 

… and the control of an SKA LOW sub-array similarly: 

 



 

INFRA, SaDT and parts of MeerKAT have been omitted from this diagram because they are not 

commanded by the TM sequencer .   These, and some SDP systems (e.g. LTA and DELIV) are passively 1

involved in the observations, but not actively - the only effect they will have is if there is a major fault 

which causes the sub-array to transition to a non-operational state. 

The CONFIG/SCAN control derives from the top level observational view of the system defined by 

OBSMGT. In implementing this, I propose it will require each TANGO device below the Sequencer 

device in the above diagram to implement a uniform control state machine mechanism described 

below. Since it is a hierarchy, intermediate systems are both a controlled sub-system for a higher level 

device, and a controlling system for lower level devices in the hierarchy. I will try and ensure this 

context is clear below. 

Note that since all observation control will be done at the sub-array level, it is assumed that the 

hierarchy of the controlled sub-systems distinguishes between sub-array contexts. I assume the 

design pattern for this is to model the control of a sub-array as a TANGO class, and implement the 

control in different devices for each sub-array. Whether the devices for all the sub-arrays are in one 

TANGO device server (i.e. one process) or in multiple device servers may be implementation 

dependent. However, for the purposes of the exercise, the above diagram (and all the discussion 

below), should be assumed to be repeated once for every sub-array, and there be an implementation 

defined fixed number of sub-arrays (currently 16) and some (actually most) sub-arrays contain no 

controlled hardware. 

1  Unless we adopt some form of software defined networking (SDN) for control of SaDT components during the 
observation, but at the moment any form of SDN is confined to CSP or SDP. 



Description of Observing Control 

Observing Control State Diagram 

Each TANGO device that abides by the CONFIG/SCAN protocol will have an enumerated attribute 

called OBS_STATE. 

 

Attribute Name Attribute Type Description Access 

OBS_STATE Enum One of Idle, 
Configuring, Ready, 
Scanning, Paused, 
Aborted or Fault 

Read/Write 

 

The observing state diagram is described below. Specific transitions of OBS_STATE can be triggered 

either internally or externally (but not both). The states and state transitions are described in the next 

two sections.  



 

Figure 2: Observing Control state transition diagram 

Description of Observing Control States 

 

State Description 

Idle Sub-array is ready to observe, but is in an undefined configuration. 

Configuring System is being prepared for a specific scan. On entry to the state no 
assumptions can be made about the previous conditions. It is a transient state 
and will automatically transition to Ready  when it completes normally. 

Ready System is fully prepared for the next scan, but not actually taking data or 
moving in the observed coordinate system (i.e. it may be tracking, but not 
moving relative to the coordinate system). 

Scanning System is taking data and, if needed, and all components are synchronously 
moving in the observed coordinate system. Any changes to the sub-systems are 
happening automatically 

Paused System is fully prepared for the next observation, but not actually taking data or 



moving in the observed system. Similar to Ready  state.  

Aborted System has had previous state interrupted by controller and is in an undefined 
state. 

Fault System has detected an internal error making it is impossible to remain in the 
previous state. 

 

Description of Observing Control State Transitions 

With the exception of “Reconfigure”, all externally triggered state transitions are generated by a 

TANGO command of the same name. The design intention is that the commands will be broadcast 

using the Tango “Group” mechanism, so all external transitions will be triggered across the system 

nearly simultaneously. 

All commands will return a success or failure (which will typically be signified by throwing an 

exception in the client). If a sub-system command returns a failure then the controlling system will 

sends an “Abort” command to any controlled sub-system before itself returning a failure. (Limited 

retry’s are low-level responsibilities). 

Transition Description 

Configure There are two possibilities, both of which should be handled: 
1. Command has a single integer parameter, which is a Scheduling 

Block Identifier (SBI).  
2. Command has a single string parameter, which is a JSON string 

containing the configuration information. One of the items in the 
JSON string will be the SBI. The JSON structure will be organised 
hierarchically, and the system should ignore any elements that are 
not relevant to it. 

 
On receipt of this command the controlled system will: 

1. Update OBS_STATE to Configuring 
2. Fan out the Configure command to its controlled sub-systems, 

including any sub-system configuration derived if the parameter 
was a JSON string. 

3. Do any processing required to prepare for the start of the 
Scheduling Block. 

4. Wait for all sub-systems to return. 
5. Update any attributes required for synchronised start of the scan. 
6. If all completes successfully, update  OBS_STATE to Ready  before 

returning successfully to the caller (a Configured transition). 

Configured This is an automatic transition after Configuring  state has completed 



successfully. 

Reconfigure This is the only transition not triggered by a TANGO command. It is 
triggered by a TANGO write_attributes() request to change a set of 
configuration attributes exposed by the sub-system. 
 
On receipt of this request the sub-system will: 

1. Update OBS_STATE to Configuring 
2. Fan out the the transition in the form of write_attributes 

commands to its controlled sub-systems. 
3. Do any processing required to prepare for the start of the 

Scheduling Block. 
4. Wait for all sub-systems to return. 
5. Update any attributes required for synchronised start of the scan. 
6. If all completes successfully, update  OBS_STATE to Ready  before 

returning successfully to the caller (a Configured transition). 

Scan Command has a parameter which indicates the time (TAI) at which the Scan 
will start. 

End Observation Command has no parameter. This is a transition to indicate the end of the 
Scheduling Block. Sub-systems should transition to Idle , and may enter low 
power mode after a suitable time. 

Scan Complete This can be either an automatic or an externally triggered transition after 
the Scanning  state is completes normally. Typically, at top level only one 
sub-system will automatically transition. The control system will then notify 
all the other sub-systems that the scan is complete by invoking this 
command. 

Pause Command has a single parameter which indicates the time (TAI) at which 
the scan should pause. As part of the transition the system should move to 
a position where the observation could resume from where it would be at 
that time. Pauses will not be triggered automatically, but will have to 
ultimately triggered by an operator action.  

Continue Command has a parameter which indicates the time (TAI) at which the Scan 
will restart. 

End Scan This command signifies that the scan has completed successfully, but 
manually by operator action. Otherwise it is synonymous to Scan Complete 

Abort Command has a single parameter and this is an asynchronous command 
that can be sent at any time. System should immediately transition to the 
Aborted  state which is one in which the system is in a safe configuration 
and not generating observational data. The parameter (which could be 
optional) could indicate what level of safety is required - the two options 
being: 



1. as near as possible to the current configuration (default), or 
2. as safe as possible given the current conditions. 

Reset Command has no parameter. System should transition to Idle  state. 

Fatal Error This is an internally triggered transition which indicates the system cannot 
continue with the current state transition, request or command. If a 
controlling system detects this transition it should immediately send an 
Abort transition to all other controlled sub-systems and transition to the 
Error state. 

 

Engineering Functionality 

Most of the detail in this document deals with control of typical observations where operation is 

automatic and controlled by a sub-array sequencer. In this case control will nearly always follow the 

hierarchy shown in Figure 1. The only exception might be: 

1. The sequencer might not automatically transition from one state to another - it may be 

programmed to pause just before a scan, for example, so the operator can give a final check 

before taking data. 

2. The Pause state is only entered as a result of a manual operation. At this point the operator 

might correct some minor setting before continuing. 

However, during Engineering operations the control will largely not be automatic, and no such 

assumptions apply. In particular, the following should be supported: 

● All transitions can be done manually - a typical implementation would be a button that sends 

the appropriate command to the sequencer, where it would be fanned out to the 

sub-systems. 

● Automatic generation of a Scheduling Block Identifier. When the engineer initiates the 

Configure transition she is basically switching the system out of standby mode ready for 

operations. This might involve pressing a “Ready” button, which will trigger the sequencer to 

configure the system with a generated identifier. 

● Any TANGO device can be manipulated directly at any time. Engineering will often be done via 

engineering screens that communicate directly to low-level TANGO devices. Nothing should 

prevent this low level control. Typically this will be done when the system is in Ready  state. 

Correlation with other global views and similar concepts 

The table below tries to correlate the Observing Control State of a sub-array with various other 

concepts.  

 



Sub-Array 
Availability 

Operational 
State 

User 
perception(?) 

Accounting 
Category 

Observing 
Control State 

TANGO 
State? 

Operational Science 
Operations 

Science 
observation 

Setup Configuring MOVING 

Ready ON 

Science Scanning RUNNING 

Calibration 
observation 

Setup Configuring MOVING 

Ready ON 

Calibration Scanning RUNNING 

Observation 
overheads 

Other(?) Idle STANDBY 

Paused ON 

Aborted STANDBY 

System Level 
Engineering 

Engineering Engineering Configuring MOVING 

Ready ON 

Scanning RUNNING 

Idle STANDBY 

Paused ON 

Aborted STANDBY 

Not 
Operational 

Sub-array 
reconfiguration 

Engineering Engineering Undefined UNKNOWN 
 

Sub-array with 
no hardware 

Irrelevant 
concept(?) 

None/Other Undefined UNKNOWN 

Weather Weather Weather Idle Any 

Utility Fault Fault Idle OFF 

Component 
Level 
Engineering 

Engineering Engineering Idle Any 

System Fault Fault Fault Fault FAULT 

 



Interaction with the TANGO Device State 

Note that the TANGO state column in the above table is just a (potentially provocative) suggestion. 

The assignments may depend on technical details, such as the alarm behavior in MOVING, RUNNING 

and STANDBY and FAULT states. It is also assumed that the device automatically transitions through 

the TANGO INIT state to the Idle /STANDBY state. 

Synchronisation 
This could be implemented in a number of ways. A simple proposal would be for each system to have 

an attribute that is set before the completion of any “Configured” or “Paused” transition. This would 

indicate a minimum time needed to start scanning. For example: 

Attribute Name Attribute Type Description Access 

SCAN_DELAY Double Minimum time in 
seconds for 
sub-system to 
transition from current 
state to scanning. Only 
defined when 
OBS_STATE is Paused 
or Ready. Negative 
values are undefined. 

Read only 

Any controlling system will return the maximum value returned from any controlled sub-system. The 

sequencer will use this as a guide to set the start time for the next scan. 

Aggregation 
Aggregation has been a topic of much discussion, since the right thing to do when aggregating is often 

context sensitive. 

Control Aggregation 

The proposed control aggregation strategy is defined above - any low level fault that stops an 

observation continuing should be propagated to top level and all other controlled sub-systems 

aborted. This however, means that the barrier to declare a fault condition is high. 

The use of this control aggregation strategy is only mandated to the levels described in the first 

(Overview) diagram, but individual elements could propagate it further if they see it is warranted. 



Monitoring Aggregation 

Any form of monitoring aggregation will not have any direct effect on an observation in progress - this 

will only happen as a result of a change in the observing state. However, developers should generate 

summary attributes and summary screens of their sub-systems showing the important information. 

Problems with the underlying sub-systems that need the attention of the operator should be signalled 

by the alarm system. Alarms should conform to the IEC 62682 standard. Controlling systems should 

propagate any alarms in the controlled sub-systems through a suitable alarm aggregation TANGO 

device. This should, at minimum, indicate whether there are any sub-system alarms, and whether 

there are any unacknowledged sub-system alarms. 

TODO: This could either just be through a 3 level enum (NO_ALARMS, ACKNOWLEDGED_ALARMS, 

UNACKNOWLEGED_ALARMS) or something more complicated. 

Component level states 
In this context, I consider that components are low level systems which are either: 

● beneath the control hierarchy described above, or 

● don’t participate in it (i.e. pure monitoring systems like weather stations or SaDT). 

The current “SKA Control Model” document describes many potential component level states - the 

difference between that document and this is that it tries to define how to aggregate these 

component level states and I propose that they are largely not aggregated - except to the level 

described above. The aggregation is largely through the monitoring and display hierarchy, not the 

control hierarchy described above. 

However, elements can do their own Engineering Control aggregation to the level that they consider 

appropriate, but that this does not not propagate up into Telescope Manager. Engineering level 

functionality can be done through engineering level devices. 

Note that it may also make sense to aggregate alarms both by sub-array, and by element. (i.e. there is 

a top-level DISH alarm aggregation for all dishes with its own drill down, and an aggregation by 

sub-array). 

 

 

  



Appendix. Background Information 

SKA MID Control Hierarchy 

The SKA MID Control Hierarchy from a System Engineering domain point of view is represented as 

follows: 

 

It is important to note that these boxes don’t really represent anything specific yet from a control 

functionality viewpoint, they are just names. Also, the following top level states were defined in a 

draft document circulated by the MID States and Modes RT. 

SKA Low Control Hierarchy 

The SKA LOW Control Hierarchy from a System Engineering domain point of view is represented as 

follows: 

 



SKA Observatory of sub-array states 

The following state set of state definitions were used as input to the States and Modes resolution 

team. 

 

State Definition 

Operational Observing At least one sub-array is in the SO_Calibrating or 
SO_Observing mode (see sub-array modes for definitions), 
for the purpose of science observations. 

Standby System is functionally available for science observations, but 
is not used for observing. Sub-arrays could be in SO_Standby 
or SO_Configuring mode, or no sub-arrays could be 
configured. 

Not Operational Weather Observing is not possible due to poor weather (e.g. wind 
stow conditions). 

Utility Observing is not possible due to utility problems (e.g. power 
failure). 

Engineering / 
Maintenance 

System is not available for any science observations, due to 
upgrades, scheduled maintenance, off-line calibration, 
software updates or testing. 

System Fault System is not available for any science observations, due to a 
critical system fault. 

 

 


