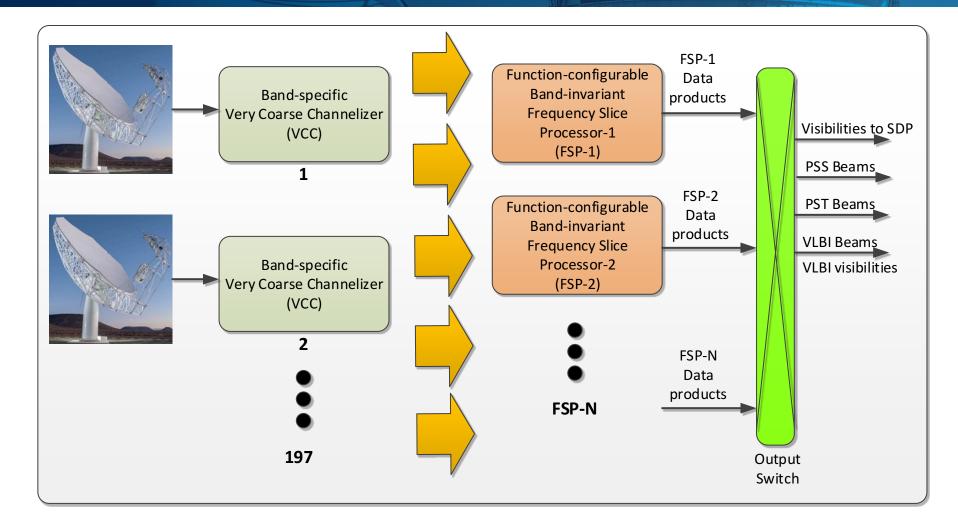
NRC·CNRC

TM's View of the Mid.CBF Frequency Slice Approach

Michael P. Rupen NRC Canada June 13, 2017

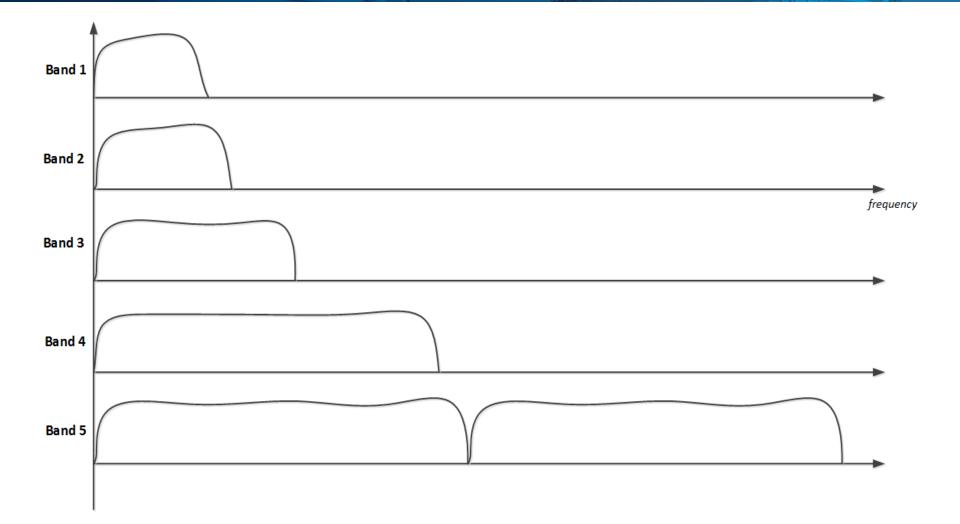

CENTRAL SIGNAL PROCESSOR

National Research Conseil national de recherches Canada

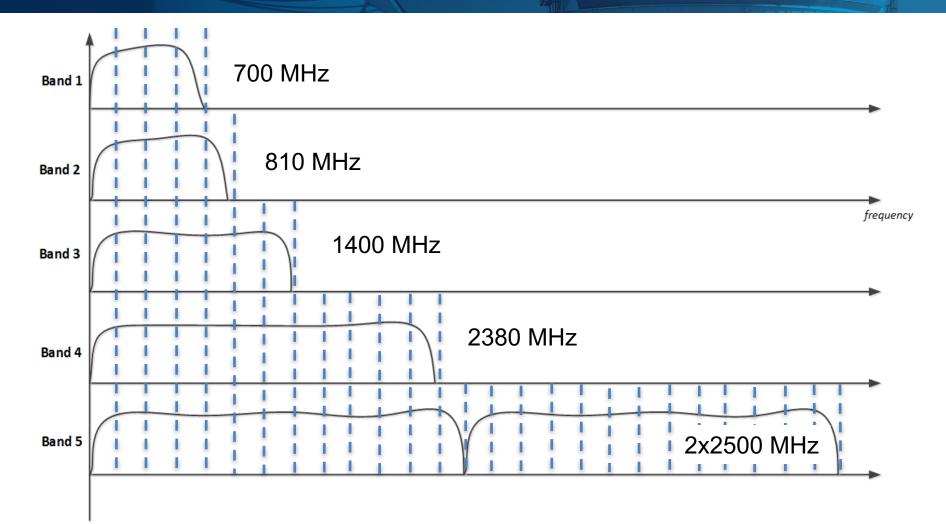
Frequency Slice Architecture

SKA Engineering Meeting 2017, Rotterdam, NL

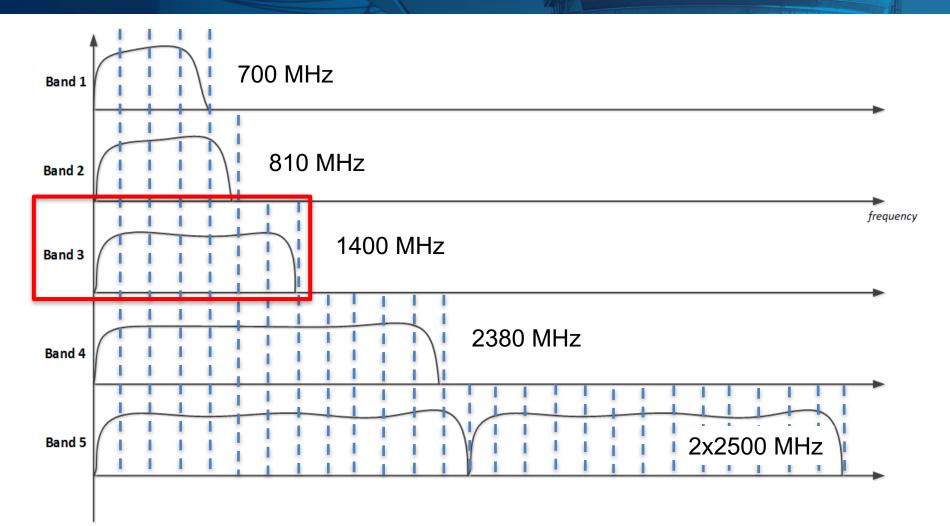
Very Coarse Channelizers (VCCs)

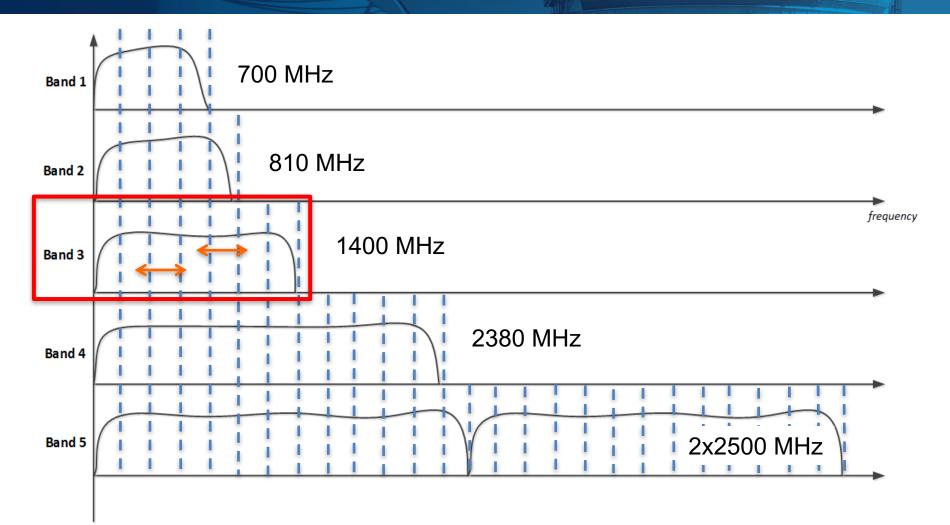

- 197+1 VCCs (one VCC per dish)
- VCCs are *completely* independent
- Takes input wideband and produces:
 N x 200 MHz Frequency Slices to cover the full Band (e.g., Band 2 BW= 810 MHz → N= 5)
 - + 2 x 300 MHz independently tunable **Search Windows** (used for Pulsar Search and Transient Buffer capture)
- To configure a VCC:

3


- Choose the observing Band (per subarray)
- Choose a frequency shift (optional) (per subarray)
- Choose tunings for Search Windows (per subarray)

NRC·CNRC


Choose/pass along clock offset (per dish)



SKA Engineering Meeting 2017, Rotterdam, NL

SKA Engineering Meeting 2017, Rotterdam, NL

SKA Engineering Meeting 2017, Rotterdam, NL

NRC.CNRC

- Any VCC product (Frequency Slice or Search Window) can be forwarded to any (and any number of) Frequency Slice Processors (FSPs)
- Each FSP receives one `VCC product' from *each* VCC
- Each FSP performs one function on one VCC product for all subarrays
 - CORRelation: wideband *or* zoom window (up to 16k channels)
 - PSS beamforming (192x300 MHz PSS beams, distributed over subarrays)
 - PST beamforming (16x200 MHz PST beams, distributed over subarrays)
 - VLBI: corr'n + beam-forming (2 beams/FSP for each of up to 10 subarrays)

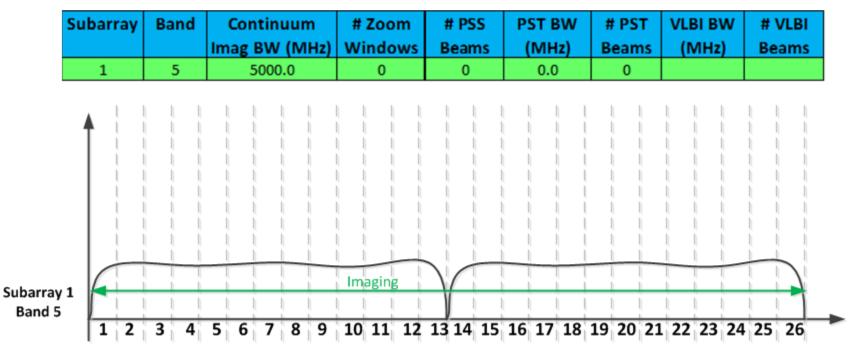
8

Frequency Slice Processors

- Mid.CBF provides 26+1 FSPs
 - FSPs are *totally* independent
 - More $\$ \rightarrow$ more FSPs; less $\$ \rightarrow$ fewer FSPs
- To configure the FSPs:

9

- Choose (one) signal processing mode for each FSP (CORR, PSS-BF, PST-BF, VLBI) (per FSP)
- Choose one FS/Search Window to send to each FSP (per FSP, per subarray)
- Configure appropriate mode parameters for each FSP (per FSP, per subarray)
 - E.g., CORR → BW (200, 100, ..., 3.125 MHz), tuning, # of channels, integration time


NRC·CNRC

- **Frequency Slice Processors**
- This allows a lot of flexibility 26 independent CBFs!
- Need not expose all the options initially ...although it is pretty simple: Excel spreadsheet
- Could start with a few (2-3?) "standard modes":
 - Bands 5a, 5b: full correlation: $2 \times 2.5 \text{ GHz} \rightarrow 26 \text{ FSPs}$
 - Bands 1,2: full commensality:
 - Full BW correlation: 810 MHz, 200 MHz/FSP → 5 FSPs
 - 16 full-BW PST beams: 810 MHz, 200 MHz/FSP → 5 FSPs
 - 1500 x 300 MHz PSS beams: 192 beams/FSP → 8 FSPs
 - Zoom windows using left-over FSPs (26-18=8) → 8 zoom windows

• VLBI

10

ECP 170017 Example 1: Band 5 full-bandwidth imaging

Band 5 is sliced in 26 x 200 MHz Frequency SIIces.

Each Frequency Slice is processed (correlated) on different Frequency Slice Processor (FSP). All 26 FSPs are used to produce a complete set of visibilities for Band5 (across full band). Any Frequency Slice and be processed on any FSP.

11 SKA Engineering Meeting 2017, Rotterdam, NL

NRC.CNRC

ECP 170017 Example 2: Fully commensal Band 2, & two subarrays

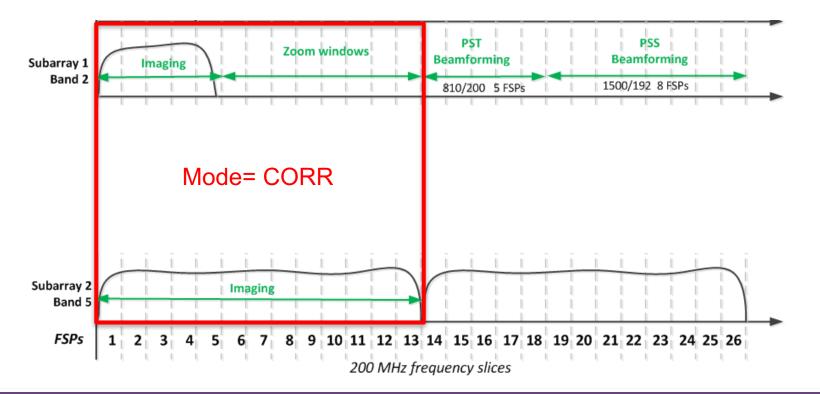
Subarray 1:

- Central array core for Band 2 (L-band) imaging, pulsar search, pulsar timing (uses full capacity of FSPs 14 to 25)
- FSP in PSS Beamforming mode can form up to 192 PSS beams 1500/192 (rounded up)=8 FSPs are needed to produce 1500 PSS beams
- 810/200 (rounded up)= 5 FSPs are needed to perform Pulsar Timing in full Band 2.

Subarray 2:

12

➢ long-baseline (out of core) Band 5 imaging (half bandwidth)


Subarray	Band	Continuum	# Zoom	# PSS	PST BW	# PST	VLBI BW	# VLBI
		Imag BW (MHz)	Windows	Beams	(MHz)	Beams	(MHz)	Beams
1	2	810.0	8	1500	810.0	16		
2	5	2500.0						

NRC·CN

SKA Engineering Meeting 2017, Rotterdam, NL

ECP 170017 Example 2: Fully commensal Band 2, & two subarrays

Subarray	Band	Continuum	# Zoom	# PSS	PST BW	# PST	VLBI BW	# VLBI
		Imag BW (MHz)	Windows	Beams	(MHz)	Beams	(MHz)	Beams
1	2	810.0	8	1500	810.0	16		
2	5	2500.0						

SKA Engineering Meeting 2017, Rotterdam, NL

NRC CNRC

Scan Configuration: subarrays & FSPs

Scan ID = 123

Subarray 1

List of dishes = 1-10, 27, 38, 55, 108-190

Observing Band = 2

<RFI parameter>

<Search Window tunings>

FSP 1 spMode= CORR

<CORR mode parameters>

```
FSP 26 spMode= PSS-BF
<PSS-BF mode parameters>
```

Scan ID = 124

Subarray 2

List of dishes= 11-26,28-37,39-54,191-197

FSP 1 spMode= CORR

<CORR mode parameters>

FSP 13 spMode= CORR

<CORR mode parameters>

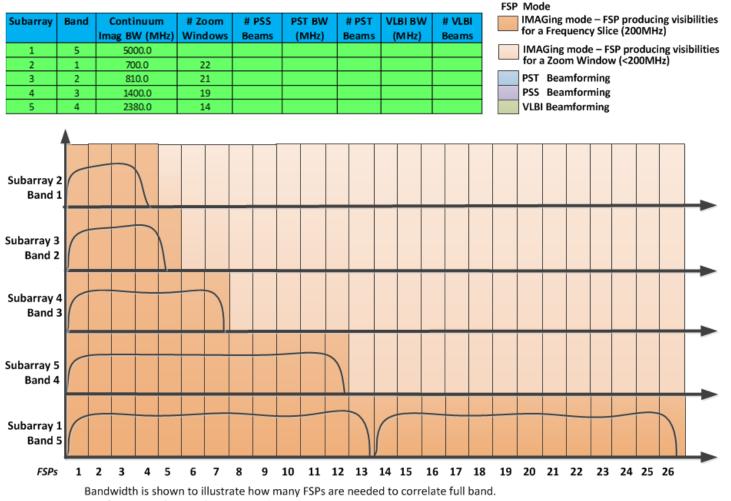
Per subarray, define member dishes & search window tunings

Per FSP (per subarray), define signal processing mode parameters

...CORR: Freq. Slice, BW, tuning, # & choice of channels, integration time

...PSS-BF: Search Window, where to send data

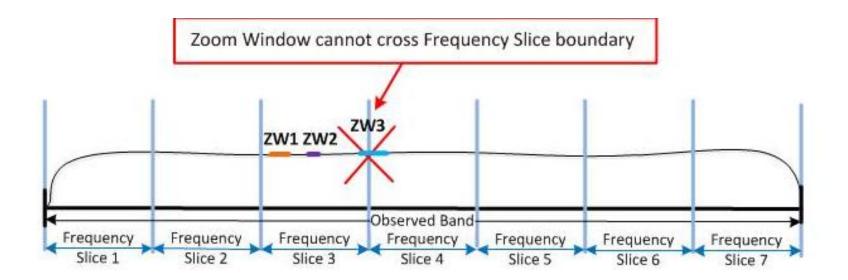
...PST-BF: Freq. Slice, where to send data


TM must ensure consistency of FSP signal processing modes across subarrays, and track who controls each PSS & PST beam

SKA Engineering Meeting 2017, Rotterdam, NL

NRC CNRC

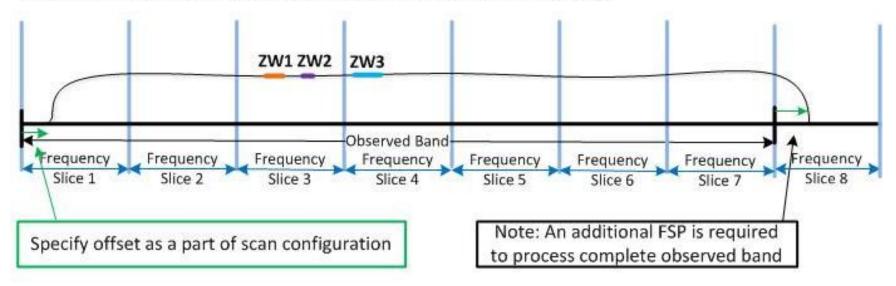
ECP 170017 Example 5:


Wideband continuum: simultaneous all bands (using subarrays)

Any frequency slice can be processed on any FSP.

SKA Engineering Meeting 2017, Rotterdam, NL

Zoom Windows & "wideband tuning"

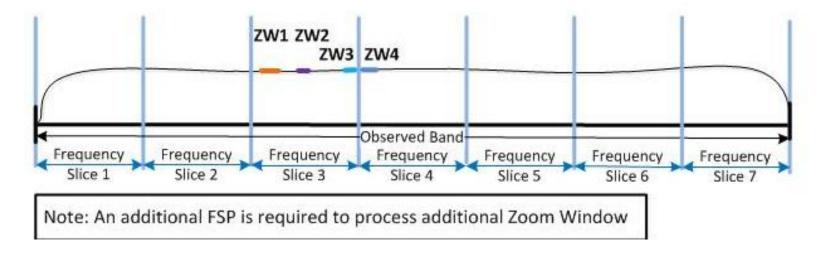

SKA Engineering Meeting 2017, Rotterdam, NL

NRC CNRC

16

Zoom Windows & "wideband tuning"

Option 1: Shift entire observed band to accommodate Zoom Window 3



SKA Engineering Meeting 2017, Rotterdam, NL

NRC CNRC

Zoom Windows & "wideband tuning"

Option 2: split Zoom Window 3 in two, so that each part 'belongs' to a different Frequency Slice.

SKA Engineering Meeting 2017, Rotterdam, NL

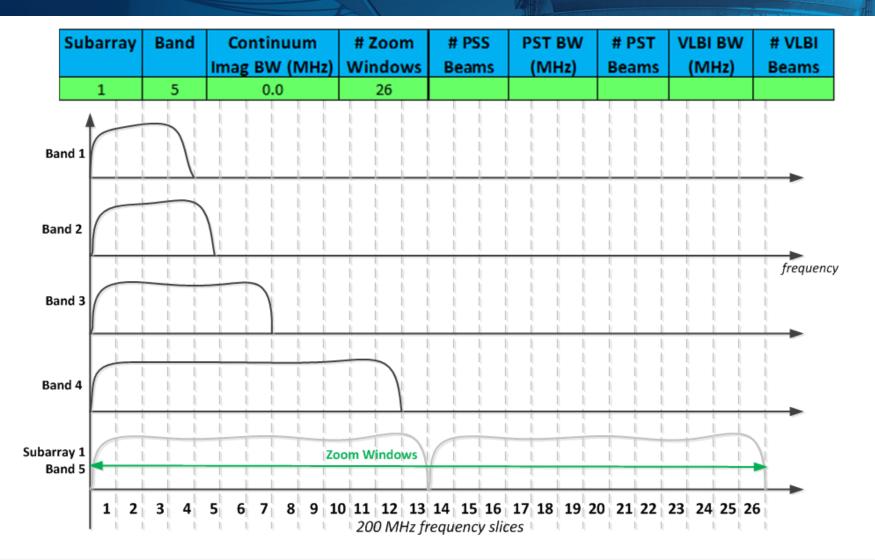
NRC CNRC

- The mode for a single FSP applies to *all* subarrays
 →FSPs are a global resource, like PSS and PST beams
- Data transfer
 - Up to ~380k channels
 - Shared links for visibilities, transient data, (maybe) VLBI
 - CORR: per-FSP, per-subarray choices of channels, channel averaging, & integration time
 - → CSP-SDP data rate is another global resource

Backup slides

SKA Engineering Meeting 2017, Rotterdam, NL

20


ECP 170017 Example 3: Targeting multiple spectral lines in Band 5

- Entire array in Band 5
- All 26 FSPs: Mode= CORR, used to produce Zoom Windows
- Each Zoom Window independently tunable within *any* 200 MHz frequency slice.
- Bandwidth independently selected for each Zoom Window in range 200 MHz to 3.125 MHz.
- Total number of channels is 26 x ~15k = 390k/pp/baseline
 - channel pruning can be performed or channels can be integrated longer to reduce the data rate to the SDP.

Subarray	Band	Continuum	# Zoom	# PSS	PST BW	# PST	VLBI BW	# VLBI	
		Imag BW (MHz)	Windows	Beams	(MHz)	Beams	(MHz)	Beams	
1	5	0.0	26						

SKA Engineering Meeting 2017, Rotterdam, NL

ECP 170017 Example 3: Targeting multiple spectral lines in Band 5

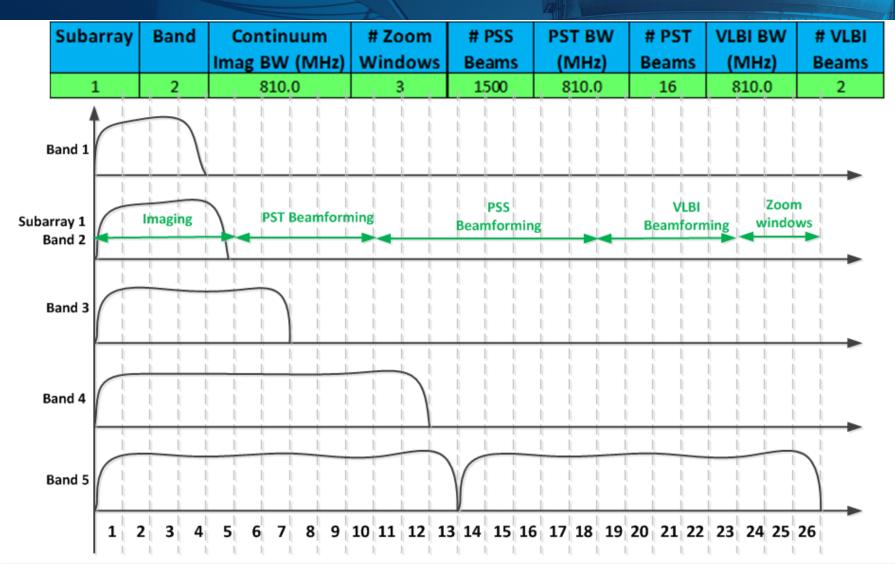
SKA Engineering Meeting 2017, Rotterdam, NL

NRC·CNRC

22

ECP 170017 Example 4:

Band 2: VLBI beamforming, imaging, pulsar search, and pulsar timing


- One FSP is required for each 200 MHz of continuum BW
 5 FSPs are required to cover the 810 MHz of BW.
- One FSP can form 192 PSS Beams
 1500/192= 8 FSPs are needed to produce the PSS beams
- PST beams are formed using 200MHz 'slices' 810/200 (rounded up)= 5 FSPs are required for PST beamforming to 'cover' full Band 2 bandwidth.
- VLBI beams also require 810/200 (rounded up)= 5 FSPs, to produce 2 VLBI beams (or allocate more FSPs if more VLBI beams are required)
- Remaining 3 FSPs can be used to produce (3) Zoom Windows

Subarray	Band	Continuum	# Zoom	# PSS	PST BW	# PST	VLBI BW		
		Imag BW (MHz)	Windows	Beams	(MHz)	Beams	(MHz)		
1	2	810.0	3	1500	810.0	16	810.0	2	

SKA Engineering Meeting 2017, Rotterdam, NL

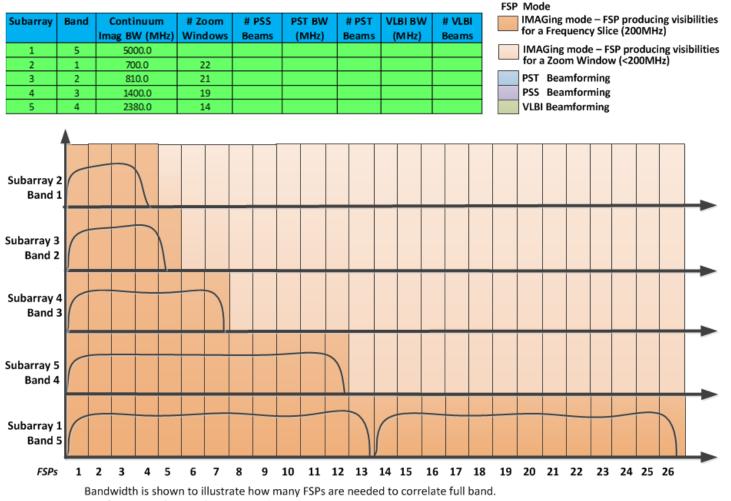
ECP 170017 Example 4:

Band 2: VLBI beamforming, imaging, pulsar search, and pulsar timing

SKA Engineering Meeting 2017, Rotterdam, NL

ECP 170017 Example 5:

Wideband continuum: simultaneous all bands (using subarrays)


- Full Band 5 continuum bandwidth, with other sub-arrays full continuum and zoom windows
- All 26 FSPs are in Mode= CORR(elation)

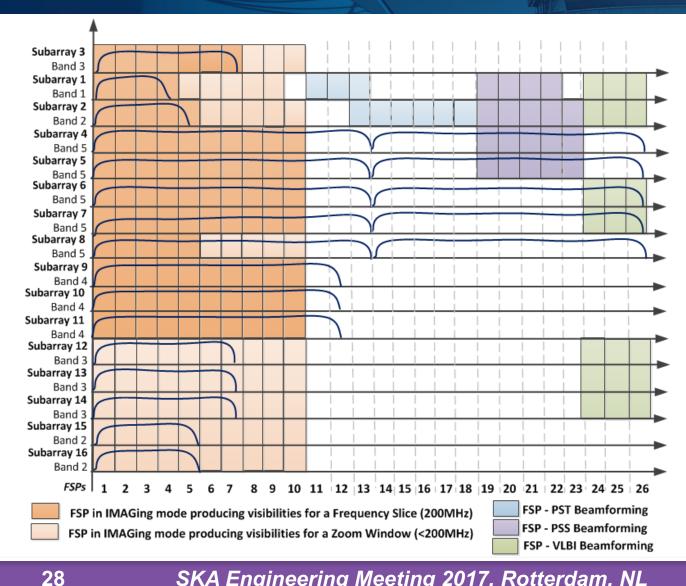
Subarray	Band	Continuum	# Zoom	# PSS	PST BW	# PST	VLBI BW	# VLBI
		Imag BW (MHz)	Windows	Beams	(MHz)	Beams	(MHz)	Beams
1	5	5000.0						
2	1	700.0	22					
3	2	810.0	21					
4	3	1400.0	19					
5	4	2380.0	14					

ECP 170017 Example 5:

Wideband continuum: simultaneous all bands (using subarrays)

Any frequency slice can be processed on any FSP.

SKA Engineering Meeting 2017, Rotterdam, NL


NRC CNRC

ECP 170017 Example 6: 16 sub-arrays, each with different observing goals

Subarray	Band	Continuum	#Zoom	#PSS	PST BW	# PST	VLBI BW	# VLBI	Subarray	Subarray N PSS FSPs	Subarray N_PST_FSPs	Subarray N_VLBI_FSPs		
		Imag BW (MHz)		Beams	(MHz)	Beams	(MHz)	Beams	N_imag_FSPs					
1	1	700.0	5	500	700.0	4	600.0	2	9	2.604	4	3		
2	2	810.0	5	1000	810.0	4	600.0	2	10	5.208	5	3		
3	3	1400.0	3						10	0.000	0	0		
4	5	2000.0			1000.0	4			10	0.000	5	0		
5	5	2000.0			1000.0	4			10	0.000	5	0		
6	5	2000.0					600.0	2	10	0.000	0	3		
7	5	2000.0	-				600.0	2	10	0.000	0	3		
8	5	1000.0	5						10	0.000	0	0		
9	4	2000.0							10	0.000	0	0		
10	4	2000.0							10	0.000	0	0		
11	4	2000.0							10	0.000	0	0		
12	3		10				600.0	2	10	0.000	0	3		
13	3		10				600.0	2	10	0.000	0	3		
14	3		10				600.0	2	10	0.000	0	3		
15	2		10						10	0.000	0	0		
16	2		10						10	0.000	0	0		
						16	Note: Tota	l number	of PST beams o	an't exceed	16the PST s	ub-element lin		
				1500	Note: Tota	l number	of PSS bear	ns can't e	ceed 1500th	e PSS sub-ele	ement limit			
		SYSTEM	FSPs											
		N_imag_FSPs	10	Note: Each	imaging FSI	P can do a	ny coarse (20	00 MHz) or	zoombandwidt	'n				
		N_P\$\$_F\$Ps			are always									
		N_P\$T_F\$Ps												
		N_VLBI_F\$Ps												
		TOTAL_FSPs			26 FSPs in ti									

SKA Engineering Meeting 2017, Rotterdam, NL

ECP 170017 Example 6: 16 sub-arrays, each with different observing goals

- Bandwidth is shown to illustrate how much of the observed band is correlated.
- ✤ 200MHz Frequency Slice can be placed anywhere within the band.
- Each FSP receives 200MHz Frequency Slice or 300MHz Search Window for each dish.
- 200MHz Frequency Slices are used as input for CORR, PST-BF, VLBI.
- ✤ 300MHz Search Windows are used as input for PSS-BF.

SKA Engineering Meeting 2017, Rotterdam, NL

<u>NRC CNRC</u>

Canada Canada

Questions and Discussion?

Thank you.

CENTRAL SIGNAL PROCESSOR

National Research Council Canada Conseil national de recherches Canada