
SDP Update

Jeremy Coles
SDP Project Manager

12th June 2017

1

SKA Engineering Meeting
Rotterdam
Version 1.0

Design of the computing
hardware platforms,
software, and
implementation of
algorithms needed to
process science data from
the correlator or non-
imaging processor into
science data products.

Acknowledgements

The slides presented draw directly on suggestions/material provided by:

•  Paul Alexander
•  Verity Allen
•  Rosie Bolton
•  Tim Cornwell
•  Ferdl Graser
•  Ben Mort
•  Bojan Nikolic
•  Stif Telfer
•  Peter Wortmann

And indirectly work from across the whole of SDP.

Mistakes in translation and presentation are mine! Inevitably to fit the time available for
this talk I can only present a subset of recent SDP activity. Many areas are Work In
Progress.

2

SDP Context 1

3

SDP Context 2

4

SDP Context 3

5

~250 PetaFLOP system
~200 PetaByte/s aggregate BW to fast working memory
~80 PetaByte Storage
~1 TeraByte/s sustained write to storage
~10 TeraByte/s sustained read from storage
~ 10000 FLOPS/byte read from storage
~2 Bytes/Flop memory bandwidth

Reminder: One SDP Two Telescopes

Ingest (GB/s)

SKA1_Low	 500	

SKA1_Mid	 1000	

In total need to deploy
eventually a system which
is close to 0.25 EFlop of
processing

A tiered (regional)
processing organisation will
consume SDP outputs. Data
products from SKA up to
1PB/day

6

Progress & planning

7

“CDR”

The understanding of how best to move forward is evolving

The SDP Consortium – Resourcing
Steady improvement in utilization requires continual monitoring

8

Reported effort

Sprint planning every 8 weeks
Evolving the project processes

9

1. Risks

2. Resourcing

3. Tasks

Work Breakdown Structure
 JIRA allocations

SDP Risks
Regular review

10

SDP to LTS interface

Pipelines to execution framework interface

Calibration strategy

Data model maturity

…………

SDP Parametric Model
Improving our understanding of the the drivers of SDP cost

11

Optimises parameters for cost. Covers:
•  All telescopes, bands and HPSOs
•  Predict, calibration, imaging and

deconvolution
•  Self-calibration (RCAL, ICAL)
•  Data product preparation (DPrepX)

Output for hardware costing:
•  Compute rates (floating ops)
•  Data rates (ingest, internal)
•  Storage requirements (buffer)

Scientific Needs (HPSOs)

Parameters

Cost

optimize

Highlights:
•  Aw-imaging with snapshots and baseline-

dependent averaging in time and
frequency

•  Facetting throughout
•  Hybrid predict based on DFT + FFT;
•  Stefcal calibration
•  Multiscale Multifrequency Synthesis for

deconvolution / major loops.
To-do:
•  more advanced calibration algorithms

(sagecal, peeling, facet calibration)

SDP Processing Components
Understanding bottlenecks and opportunities

High-level questions:
•  How many processing units?
•  Can memory keep up?
•  Do we have right operation mix?

Expensive uncertainty:
•  Assumption is 10%!
•  Need to break with tradition
•  Averaging decides the actual amounts of

visibility data with which we are dealing
•  Algorithmic approach must vary

Working (with industry) to gain knowledge:
•  Focus on small benchmarks for

predicted bottlenecks, with data sets
generated according to PM predictions

•  Modeling recommends “exotic”
configurations, needs tailored tests

•  Gridding, DFT likely with potential

45s snapshot grid coverage. Colour corresponds to complexity of w-kernels.
There are 3 main regions to consider.

Very data intensive pipeline. Recent
work was understanding the issues.

12

Execution frameworks
Parametric model can be used to formulate benchmarks for data rates

Pipeline execution is high risk:
•  High data & task rates, time limited
•  Need flexibility:

–  Parameter changes between
pipelines

–  Hardware changes (new
architectures)

–  Software changes (new algorithms)
–  Real world (reliability, usability)

•  But ideally not reinvent the wheel!

“Big data” still struggles with SKA scale.
•  Have to keep options open (e.g. RDMA)
•  Benchmark predicted data flows
•  Study issues and trends
•  Options not well aligned to our static

pipeline configurations & raw throughput.

Some frameworks we have explored with a
challenging test pipeline
Swift/T, Legion/Regent, DaLiuGE, Apache Spark (+
Alluxio), StarPU, COMPSs, Dask

13
SDP architecture must be such that execution
framework question can be reviewed later.

Example: ICAL for Mid. Some areas
need further development

Software Engineering Institute (SEI) approach

1. Formulate quality attribute scenarios (concrete & measurable)
2. Document solution in views (tailored to audience, test & iterate)
3. Collect and tie together into software architecture documentation.

Structured progress despite large design space and many constraints

14

Quality Attribute in terms
of Scenarios

Views
Styles: Module|C&C|
Allocation

Views &
Beyond

ECP-170001: “This document should include […] details of Quality Attribute Scenarios, views,
prototypes, interfaces and use cases.”

 Recent document: Architecture-Centric Development Plan for the Square Kilometre Array Science Data Processor

Light on formalism but heavy on constructive methods

SEI approach - view examples
Reworking the SDP architecture and documentation

15

Module views

●  Focus on static structure
●  Highlights coupling

(e.g. execution engine)
●  Reflects work packages

Component & Connector views

●  Focus on runtime structure
●  Highlights communication

(e.g. ingest, buffer access)
●  Suggests hardware

requirements

Data models
Understanding expected data volumes and access patterns

16

•  The SDP data processing pipelines will use
and produce various data products.

•  We have been analysing their data models as
well as the expected data volumes and access
patterns.

•  As data processing is distributed and
parallelised this needs to be supported by the
data models and access to the data.

•  Visibility and image data and calibration
solutions will form the bulk of the data and can
be distributed in a natural way.

•  Other data (such as LTM and LSM) will be
relatively small and kept by LMC.

•  Note they can potentially be accessed
simultaneously by possibly hundreds or
thousands of distributed pipeline components
in a bursty manner.

Inputs:
Visibilities
UVW coordinates
Visibility weights
Flags

Intermediate Data Products:
Multiscale clean scale images
Multiscale clean residual images
W-kernels
A-kernels
Anti-aliasing kernel
Oversampled kernel
Imaging weights

Outputs:
Dirty image
PSF
Residual image
Clean image
Clean components
Processing log

Components:
Phase rotation
Direction-dependent
corrections (A-projection)
W-projection
W-snapshots
Anti-aliasing
Gridding
FFT
De-gridding
Deconvolution
… NIP example

Illustrative flow chart

17

DRAFT

Describing the data relationships between components

•  All major calibration and imaging algorithms expressed in
Python unencumbered by practicalities of I/O, memory
management, optimisation

•  Estabishes reference e.g. for later implementation by non-
experts

•  Prototypes of functional components (referentially
transparent)

•  Synthesis components: Fourier transforms (predict, invert)
using 2D, wprojection, faceting, wslicing, snapshots

•  Model for LOW sky(S3) and LOW station beam (OSKAR)

•  Testing is memory-limited: largest image made so far is
25K by 25K pixels

•  Largely complete

•  97% coverage test suite

Algorithm Reference Library (ARL)
A Python prototype of the algorithms

18

Algorithm Reference Library
Synthesis framework allows experimenting with components

19

Graph processing using ARL and Dask

•  ARL forms a suitable basis of exploration of graph processing for
SDP

•  Graphs built and executed with Dask python package

http://dask.pydata.org

•  Express pipelines as graphs

•  ICAL - the core selfcalibration/continuum imaging pipeline - done

•  Evaluation of performance, memory overhead, locality control,
schedulers

•  Easy scaling from laptop (4 cores) to Darwin cluster

Demo in data flow environment. Platform for experiments.

20

•  Not an SDP example (yet) but one from Dask tutorial.

Animation of graph processing

•  Multiple inputs (bottom) flow to single output (top)
•  Approach goes for depth first processing (vs MPI breadth first)

To help convey the approach....

21

Dask graph for ICAL
11 ingests. 5 major cycles.

22

Stressing the architecture

•  Can the SDP architecture support all the algorithms we expect to need?

•  SDP models processing as parallel streams of data flow undergoing
processing with limited information exchanged between streams

•  Algorithms that stress this model: global calibration, MSMFS, SageCAL-CO

•  Can restate this question in terms of the telescope: are there physical effects
that are coupled across data streams? How important are they?

•  Preliminary answers: yes, there are coupled effects, and yet, they have the
potential to limit the science

•  A possible and inexpensive modification is to use an all-to-all non-blocking
switch. The software implications would need examining.

•  Still a work in progress but expect to settle very soon

Exploring the limits of the island based nature of data flow.

23

ALASKA - ADVANCED SDP INFRASTRUCTURE

•  Designed to support diversity and flexibility

Ø  Heterogeneous hardware technologies

Ø  Advanced OpenStack control plane

Ø  (but without sacrificing performance)

•  Designed for prototyping and comparing

Ø  Software defined infrastructure

Ø  Rapid deployment of execution frameworks

Ø  Support for profiling, monitoring and
analysis

ALASKA – Advanced SDP Infrastructure
A single tenancy platform to support our prototyping

24

▸ Providing Execution Frameworks (as a
service)

▸ SLURM and MPI

▸ Docker Swarm, Kubernetes

▸ Mesos

▸ Spark

▸ Models for Stimulus and Simulation

▸ Bulk Data Network

▸ Local Monitoring & Control

▸ Providing Tools for Performance Analysis

Supporting Performance Prototyping
For studying all levels of the SDP software environment

25

Alaska’s OpenStack provides logging and monitoring tools for execution frameworks.
This enables application performance telemetry to be seen alongside telemetry from
infrastructure components - creating a holistic picture.

SDP System Integration Prototype (SIP) - context

26

•  Prototype of all
major external and
internal interfaces

•  Verification and

testing of SDP
architecture

•  Focused testing and

analysis of
technology choices

•  Link to hardware

prototyping
(AlaSKA-P3)

•  Link to vertical /

execution
framework
prototyping

TM

CSP

SDP

LMC services

Capabilities /
Execution

framework(s)

Demonstrating an end-to-end SDP system prototype

SDP System Integration Prototype (SIP) - activities

27

Current activities

•  TANGO interfaces to TM
•  CSP interfaces (SPEAD, Pulsar search)
•  Master Controller interface to tasks and

execution frameworks
•  Prototyping a number of test capabilities

(pipelines)
•  LMC services such as LTS using distributed

Redis
•  Deployment of SIP code onto AlaSKA-P3

Next Steps

•  Prototyping of the SDP buffer
•  Integration of LMC services (eg. LTS, Sky

model, QA) with execution frameworks

Exploring high-risk areas

Example outcome: resilience in running LMC
services. By moving towards a micro-services like
architecture using container orchestration the risk
of single key service failure for our control
interfaces is largely mitigated

Implemented

HPSO Total
(PFLOPS)

Hours of
telescope
time

Fraction of
time

U.HPSO­4a Pulsar Search MID SPF1 ~0 800 0.01

U.HPSO­4b Pulsar Search MID SPF2 ~0 2400 0.04

U.HPSO­5a Pulsar Timing MID SPF2 ~0 1600 0.02

U.HPSO­5b Pulsar Timing MID SPF3 ~0 1600 0.02

U.HPSO­13 Hi Kinematics and Morphology 25.6 5000 0.07

U.HPSO­14 Hi MID 32.7 2000 0.03

U.HPSO­15 Studies of the ISM in our Galaxy 26.2 12600 0.19

U.HPSO­18 Transients MID ~0 10000 0.15

U.HPSO­22 Cradle of Life MID Band 5 25.4 6000 0.09

U.HPSO­27 All Sky Magnetism 26.3 10000 0.15

U.HPSO­37a Continuum Survey MID band 2 28.1 2000 0.03

U.HPSO­37b Continuum Survey MID band 2
(deep)

28.1 2000 0.03

U.HPSO­37c Continuum survey, band 2 wide 28.1 10000 0.15

U.HPSO­38a Continuum Survey MID band 5 26.1 1000 0.01

U.HPSO­38b Continuum Survey MID band 5 26.1 1000 0.01

Weighted average FLOPS value for MID HPSOs 20 PFLOPS

Approximate AVERAGE Apparent power requirement 2 ~2.7 MVA

Calculate required number of
operations for each experiment
(total).

Use fractions of time spent doing
each experiment, calculate
average SDP compute load

Average FLOPS values 3.5x lower
for MID than maximal case.

Relax latency requirement (buffer)
and save both capital cost and
power cost

Overall designing to a
250 PFlop peak system (average
efficiency ~10% driven by likely
memory bandwidth)
There are lots of assumptions!

SDP System sizing methodology
Exploring cost saving options

28

Buffer sizing

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

0 10 20 30 40 50 60 70 80 90 100

B
uf

fe
r s

iz
e,

 T
by

te
s

SDP Clock time (hours)

Buffer fill level (SKA1 MID)

We use estimate the
amount of data in the buffer
at any time.

Note that one 12 hour SB
for MID is about 20 Pbytes

We size the buffer using the
peak value from here, with a
20% overhead, plus an
additional full 12 hour
imaging SB.

Has provided one saving by allowing a looser coupling

29

SDP Cost Estimate over time

•  SDP is now costed under the element budget allocation
•  Aggressive software reuse

SDP has a Cost Resolution Team exploring cost reductions

30

SDP Cost Estimate

•  June 2017 cost submission
–  Review of software maintenance cost (due to significant s/w reuse)

•  No change to software maintenance cost
–  Update of OPEX estimate for phased deployment scenarios

•  Submitted as part of CCP
–  Performance cost of peeling, MSMFS, etc.

•  Good progress but work is still ongoing.
•  Potential impact (risk) limited to low latency network and therefore < € 2M

–  Cost estimate same as Feb 2017.
•  Other considerations:

–  Work ongoing for 2nd Tier KSPs
–  Phased deployment of hardware will give additional savings for TOC for

5-10yr period (in CCP considerations).
–  Looking at numerical precision needs and further potential cost savings

•  NOTE: The SDP hardware costed concept is not a down-selection. It is a reasoned
choice to provide a basis for deriving cost estimates.

31

Summary

32

http://ska-sdp.org

•  Context
•  Schedule
•  Sprint Planning
•  Risks
•  Parametric Model
•  Processing components
•  Execution Framework
•  SEI Approach
•  Data Models
•  Algorithm Reference
•  Completeness
•  Prototyping Platform
•  Integration Prototyping
•  Buffer Model
•  Cost Projections

ADDITIONAL SLIDES

33

High Priority Science Objectives

•  SKAO has developed a list of HPSO experiments – programmes
targeting specific scientific goals and taking long periods (~5000-16000
hours) of telescope time.

•  Draft schedule for these taking 5-15 years to complete
•  Just an example

•  We can use these to
generate example SDP
use cases and archive
growth rates.

•  Also could enable load
balancing if we relax
latency requirement of
off-line processing.

100,000 hours = 11 years 34

What does SDP do?

SDP is coupled to rest of the
telescope

Try to make the coupling as
loose as possible, but some
time critical aspects

For each observation:
•  Controlled by a scheduling

block
•  Run a Real time (RT)

process to ingest data and
feed back information

•  Schedule a batch processing
for later

•  Must manage resources so
SDP keeps up on timesacle
of approximately a week

35

Real-time activity

36

Batch activity

37

Throughput of Scheduling Blocks

Plot shows finish time for
processing as a function of
observation finish time.
Each marker is a different
Scheduling Block.

Our old SDP system sizing
assuming a system capable
of handling the maximum
case would always be ready
to start processing a new
SB as soon as its sky-time
completed. But the system
would be idle for much of
the time. Here instead, we
aim to have a system that
can keep up with the
observations, on average.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Pr
oc

es
si

ng
 fi

ni
sh

 ti
m

e

Observation finish time

Gradient 1 (30 hours
delay)

Gradient 1 (no delay)

38

Data “idle time” in buffer?

Decreasing idle time when
SDP is “catching up” –
processing faster than SB
length

Increasing lag
when SB is
slower to
process than its
observing time

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Id
le

 ti
m

e

Observation Finish time

Data “idle” time in buffer

39

