

# Mid-Frequency Aperture Arrays Update

Wim van Cappellen, Consortium Lead



SKA Engineering Meeting 2017



- The SKA is set-up to support a 50 year lifetime to offer world's biggest radio telescope in an international partnership
- Continuous upgrades and expansions, enabling new capabilities, are essential for the future of the SKA!

SKA Engineering Meeting 2017 Mid Frequency Aperture Array



### **AIP Meeting**

- Dwingeloo, 8 9 June, 2017
- Science
- AIP/SODP organisation
- Engineering
- http://www.astron.nl/ska-aip2017/
- Summary presentation
  - Thursday 15 June
  - 12.00 13.00h







## SKA 2 is about exponential growth



#### Target:

- Sensitivity  $> 10,000 \text{ m}^2/\text{K}$
- Survey Speed  $> 1.4e10 \text{ deg}^2\text{m}^4/\text{K}^2$





#### Following SKA-TEL-SKO-0000645 (Braun, 2016)

- To meet SKA2 target at 800 MHz:
  - Sensitivity spec

• SPF 1,666 dishes

• PAF 2,666 dishes

Survey speed spec

• SPF 16,320 dishes

• PAF 5,445 dishes



Based on SKA1 costing, 1 billion euro buys us only 0.1% to 0.24% of the survey speed target.



- A very large field of view, and the opportunity of transient buffering
- A fast response time and pointing
- Multiple beams, concurrent observations
- A very high survey speed capability
- High sensitivity < 1.45 GHz</li>
- No moving parts
- No vacuum, helium, cryogenics
- Lots of flexibility





#### **MFAA** Rationale

- Billion galaxy survey, i.e. high sensitivity and survey speed from 1450 MHz down to z ~3
- Very wide field-of-view transient observations, incl. buffering
- Timing of very many pulsars (10,000+)



Can only be done with an MFAA based telescope

SKA Engineering Meeting 2017



## **Consortium partners**

#### Full members

ASTRON
 System design, prototyping, management

China: KLAASA
 Receiver, antenna: 3x3 m² array

Observatoire de Paris (Nancay)
 Front-end MMIC's

Stellenbosch University
 Antenna research

University of Bordeaux

ADC

University of Cambridge
 System design

University of Manchester
 Front-end design

#### Associate members

ENGAGE SKA (Portugal)
 Renewable energy

SKA South AfricaSite support

University of Malta
 Fractal ORA

University of Mauritius
 Front-end research



### **Telescope system optimisation**









- large station beams
- less digital beams required to synthesize the FoV
- more stations to correlate
- Interesting fact
  - total data rate from MFAA to correlator is constant

9 June 2017

SKA AIP Meeting, Dwingeloo, the Netherlands





#### **MFAA Status**

- ✓ Passed the System Requirements Review https://arxiv.org/abs/1610.00683
- ✓ Whitepaper on an MFAA demonstrator https://arxiv.org/abs/1612.07917
- ✓ Continued technology R&D and prototyping









#### MFAA Key challenges

- Reducing power consumption
  - Integration
  - System optimization
- Reducing costs
  - Hardware: Design for Mass production, integration
  - Computing: Novel architectures and algorithms, integration
- Calibration down to thermal noise needs accurate beam and sky models to calibrate sources in near and far sidelobes
  - Algorithm development
  - Learn from other AA instruments (LOFAR, MWA, SKA1-Low)



#### **Antennas - Dense**



- Regular layout
- Spacing  $\lambda/2$  @ ~max. frequency





Vivaldi elements







### **Antennas - Sparse**



- Log-periodic antenna
- Random layout
- Spacing λ/2 @ low frequency

Same concept as LFAA!







# Crossed Octagonal Ring Antenna (C-ORA) Design



## **The ORA Layered Structure**







## The 1 m<sup>2</sup> ORA prototype facts

- 10x10 elements(1.25m x 1.25m)
- Dual-polarised for each element
- Frequency 400MHz to 1450MHz
- Element separation: 125mm
- Low profile (array thickness <10cm)</li>
- 64 (8x8) central elements excited (within the red box)
- 36 edge elements terminated with the matched load
- 128 LNAs integrated (64 for each polarisation)









# Radiation pattern measurement













### Beamformer board performance







# Single-Ended Front-End Development ASTRON

SKA Engineering Meeting 2017



### **Vivaldi Tile for MFAA**





SKA Engineering Meeting 2017 Mid Frequency Aperture Array



## **Dual polarisation two beams beamformer**



8 elements beamformer PCB for dual polarisations

2 beams for X polarisations

2 beams for Y polarisations



# Single-Ended Front-End Development KLAASA

SKA Engineering Meeting 2017



#### **Architecture**



SKA Engineering Meeting 2017 Mid Frequency Aperture Array



### **CTPM** with three layered structure



SKA Engineering Meeting 2017 Mid Frequency Aperture Array



### **CTPM for MFAA**

| Frequency                              | 500MHz-1500MHz         |
|----------------------------------------|------------------------|
| Rx Channels                            | 32                     |
| Band width                             | 400MHz(700MHz-1100MHz) |
| Amplitude Flatness                     | $\leq \pm 1.5$ dB (Rx) |
| Band Suppression                       | ≥ 40dB (Rx)            |
| Attenuator                             | 4bit, 1dB step         |
| Power supply                           | DC -48V                |
| Digital Output                         | 40Gb/s                 |
| Adjacent frequency channel suppression | 60dB                   |
| Power consumption                      | ≤120W                  |
| Size                                   | ≤ 233.35mm×430mm×50mm  |







### **University of Cambridge**

- Mechanical design in collaboration with Cambridge Consultants Ltd.
  - Prototype on the South African SKA site
  - Taking RFI measurements
- Working towards 128 element demonstrator at the Mullard Radio Astronomy Observatory at Lords Bridge, Cambridge











#### University of Stellenbosch



#### Basic Beamforming on a Dense Dipole Array

#### Investigate manners to reduce computational requirements during beamforming

- Reduce the number of bits available during phase quantization.
- Maintain a high pointing accuracy.
- Optimization done on array factor performance.

#### Array factor performance characterised by:

- · Effects on the visible region.
- · Pointing accuracy in the visible region.
- · Power lost in side lobes and grating lobes.

#### Beamforming application on a Dense Dipole Array

- Measure embedded element patterns.
- · Compare simulated patterns with measured patterns. · Implement simple beamforming with array factor multiplication.
  - · Simulated pattern multiplication vs measured pattern multiplication.





Figures 3 and 4: CG Renders of the Dense Dipole Array





#### RFI mitigation using spatial filtering

- · PhD student: Jan-Willem W. Steeb. Supervisors: Prof Davidson and Wijnholds
- · Results below for a LOFAR station with a UAV source.

#### Array Design for a Sparse-Regular FFT SKA Radio Telescope

- PhD topic of Jan Geralt Bij de Vaate
- Investigating options beside dense-regular MFAA array.
- Sparse regular brings grating lobes (top); sparse random (middle) tends to cancel; station rotation can potentially suppress grating lobes.

EUCAP 2017, bij de Vaate and Davidson





- a) Full skymap with RFI source visible in top right corner in dB (the RFI source is the 0 dB point).
- (b) Full skymap with RFI source removed using orthogonal projection with bias correction in dB. The cosmic source (Cassiopeia A) appears as a point source and two smeared RFI sources are also present.
- (c) Full skymap with RFI source removed using the adapted orthogonal projection with bias correction in dB. The secondary RFI sources are removed and only the cosmic source is present.



#### **Environmental prototypes**



- Environmental proto-types in the Karoo, South Africa
- Goal: Identify the "fuzzy" environmental design drivers
  - Dust, soil variation, erosion, vegetation, bugs, rodents, wildlife, birds, water, puddles, floods
- Next step: install functional antennas/receivers (Vivaldi and Log-per)



SKA Engineering Meeting 2017

y Aperture Array



#### **Educational MFAA Tiles**

- Education and building-up experience is critically important
- Planning to install "educational" tiles
  - UCT
  - Stellenbosch University
  - **–** ...





The MFAA courier



### **Concluding remarks**

- SKA Phase 1 is only the very first goal of the SKA!
- Mid-Frequency Aperture Arrays is an enabling technology for SKA2 (survey) radio astronomy around 1 GHz
- Lots of exciting R&D!



Reduction of costs and power consumption is key!



