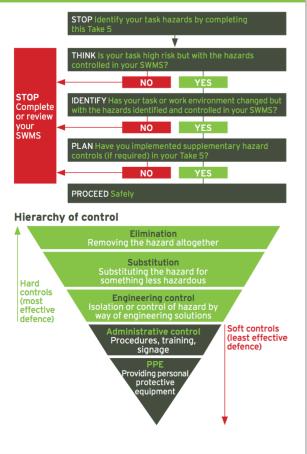
SKA1 - Infrastructure Element Australia

SKA Engineering meeting 13 June 2017

Antony Schinckel (Consortium Lead) Shandip Abeywickrema (Project Engineer) Rebecca Wheadon (Project Manager)

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, roads and access
 - Flood studies and ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, communications
- Hosting items:
 - Existing power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary


- Health, Safety and Environment
 - Underlying principles in all aspects of design :
 - You won't get safe designs as a by-product of the normal design process
 - Focus is wrong
 - HSE needs to be an engineering requirement
 - You need the design process to naturally include HSE
 - HSE identification in process of designing
 - Examine all aspects of design at each stage
 - Start and finish key design meetings with the question:
 - Don't forget HSE of your staff in design process !
 - Will prompt them in their design work
 - Aurecon's "Take 5"

HSE

Personal real time hazard check

Health, Safety and Environment

Is there an HSE aspect to this widget in any area :

- Manufacture:
 - material choice,
 - energy impacts (manufacturing, use),
 - ergonomics of staff,
 - environmental impacts,
 - disposal
- Construction:
 - installation process
- Maintenance and Operations:
 - power use,
 - access,
 - ergonomics

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Introduction

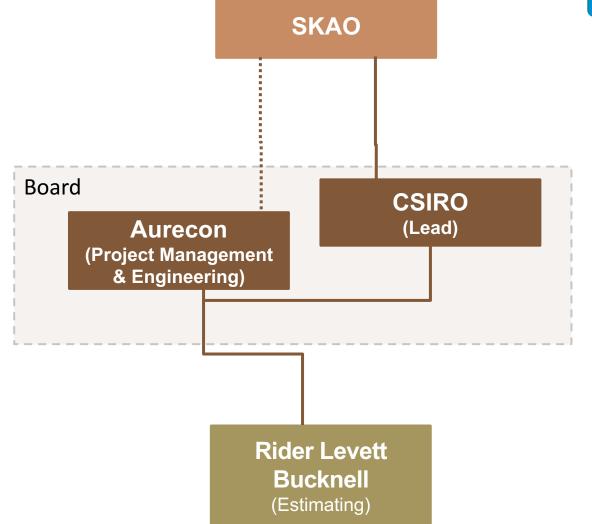
- 2017 :
 - Slow But busy !
 - Requirements evolution
 - Level 1 Rev 10
 - 2 years since PDR + Lvl 1 Rev 10 release:
 - Are we on the right path ?
 - Are design assumptions still appropriate 2 years later with evolutions to design (requirements), budget constraints, etc
 - ICD development
 - So we undertook workshops to review from scratch
 - Update Studies
 - Powerline tradeoff
 - Use of small solar power stations for remote Low stations
 - "Honing" of cost estimates

Introduction

Workshops on:

- Building
 - Operations requirements ?
 - What spaces ?
 - How do people flow ?
 - How does equipment move ?
 - What are the HSE issues ?
 - How is it different to model used (ASKAP, other telescopes MeetKAT, ALMA, MK obs, VLA, etc)
 - RFI control
 - · Process to clarify actual requirements
 - Trade-off between different requirements but still meeting RFI standards

• Power


- Distribution models
- Very complex requirements very low resistive load with very long highly inductive cables.

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Consortium members

Resources

Aurecon

Name	Role
Rebecca Wheadon	Project Manager
Shandip Abeywickrema	Project Engineer
James Massoud	Lead Subsystem Engineer - Power
Matt Burley	Lead Subsystem Engineer Water & Sanitation, Access
Mark Davie	Lead Subsystem Engineer - Buildings
Kjeld Madsen	System Engineer
Angus Leitch	Verification Team Leader
Paul Burrows	Risk Manager
Khawar Durrani	Project Controls
Wai Chan	Health & Safety Manager

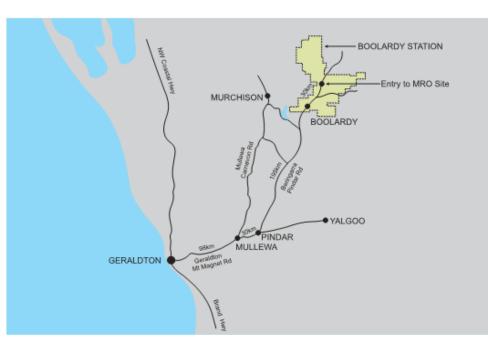
CSIRO

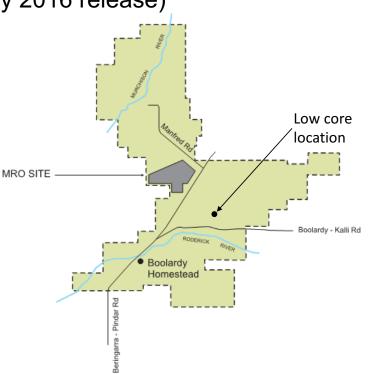
Name	Role
Antony Schinckel	Consortium Lead
Graham Allen	Subsystem Engineer – Power & Vehicles
Carol Wilson	Subsystem Engineer – RFI Lead
Kate Chow	Science Officer
Howard d'Costa	Exec Officer, RFI
Ron Beresford	Subsystem Engineer , Comms, RFI
Raji Chekkala	Configuration Manager
Kerry Ardern	General engineer, HSE

<u>RLB</u>

Name	Role
Mark Bendotti	Cost Estimating Lead
Alistair Aitken	Cost Estimating
Asitha Perera	Cost Estimating

INAU Board: Douglas Bock (CASS) Steve Negus (Chair, Aurecon) SKAO, DIIS Observers


*Not all team members shown



- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

SKA1-LOW Location

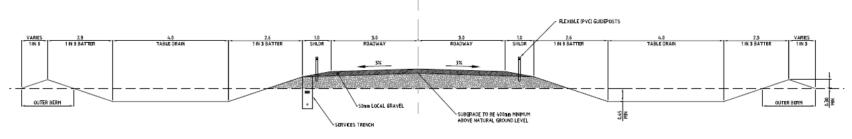
- INFRASTRUCTURE AUSTRALIA
- SKA1-LOW located within Boolardy Station, Murchison, WA (3,560 sq km)
- LOW core location selected, approx. 19.5km between LOW core and ASKAP core
- Working to released configuration 0422 (May 2016 release)



Site Accessibility – external road network

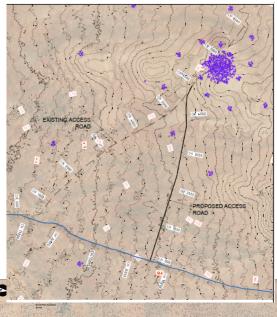
WA State Govt. Main Roads on upgrades to the route from Geraldton.

A high-level route assessment from the Perth to site has identified a route that maximises available vehicle height clearances

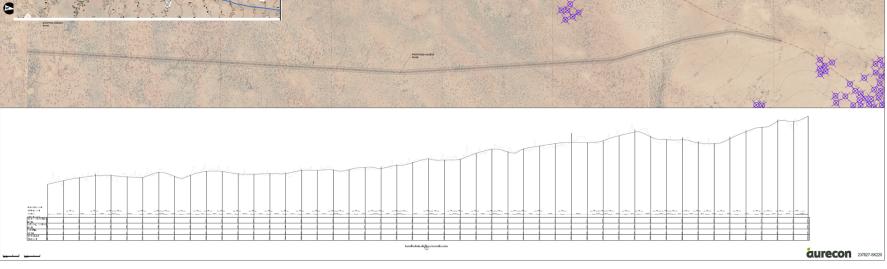


Access to SKA via a new road from the Kalli Road (in-scope)

Final route subject to CPF location decision


Typical cross-section, following the established design principles used for previous works

Not for spiral arms except in limited locations

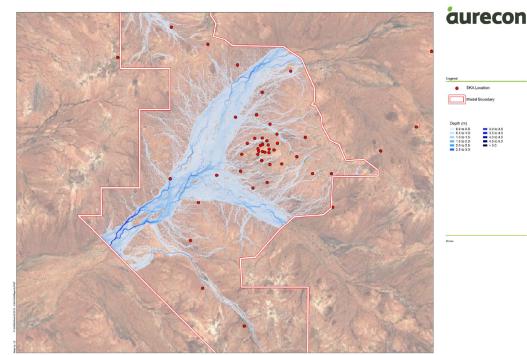

Main Access Road Cross-Section

Site Access Road to CPF

- 4.8km (+/-) access road linking CPF (anticipated locations) and the existing Boolardy-Kalli Road
- All weather 4WD accessible
- Width of 6m and a designed vehicle speed of 40km/hr

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Access - Flood Study


A Flood Investigation Report developed

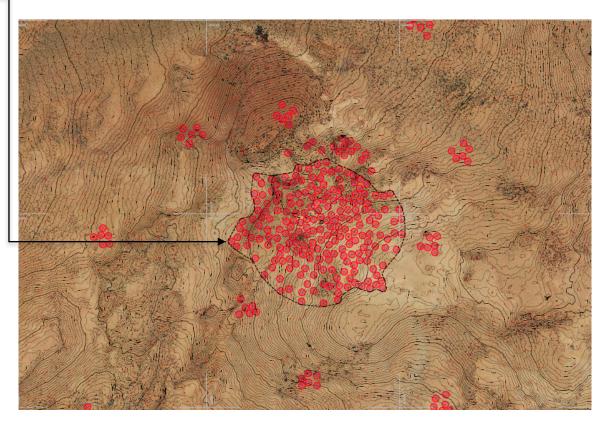
Interactive model

- used to predicted surface water levels at any location across the site
- 9 Station cluster locations are nominally affected by surface water flooding during a 1% Annual Exceedance Event
- Proposed access route to preferred CFP locations unaffected (on site)
- Location of HSE emergency access runway TBD

Station Ground Preparation

Station ground preparation specifications;

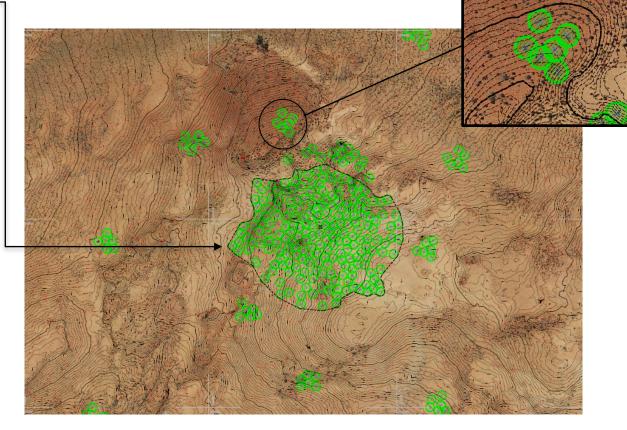
- Maximum slope across any Station is 2%
- The slope of the prepared ground for any Station to be in multiple directions from its centre (i.e. that generally the area can retain its existing topography)
- Each Station to be prepared individually with minimal disturbance to the surrounding ground
- Zero imported material


Ground Preparation – 35m Stations

Total central core clearance requirement Total central core area

= 201,058 m**2 (42% fill factor) = 500,000 m**2

- Existing 35 m dia. stations and array configuration has no overlapping stations
- Access routes within central core complex but workable

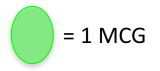


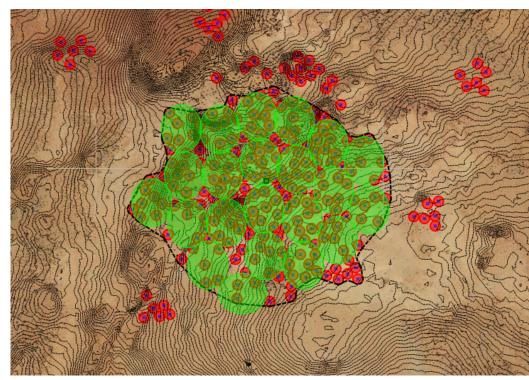
Ground Preparation – 45m Stations

Total central core clearance requirement Total central core area = 347,358m2 (69% fill factor) = 500,000m2

- Overlapping stations result based on current array configuration
- Wholesale clearance to be undertaken for a proportion of the central core (configuration dependant) – erosion control concern
- Further consideration to be given to access routes within central core

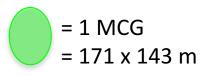
Ground Preparation – scale...

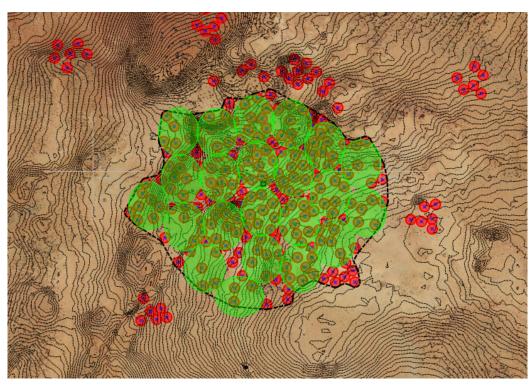




Ground Preparation – scale...

22 MCG's within the central core... Playing field only, not the full stadium

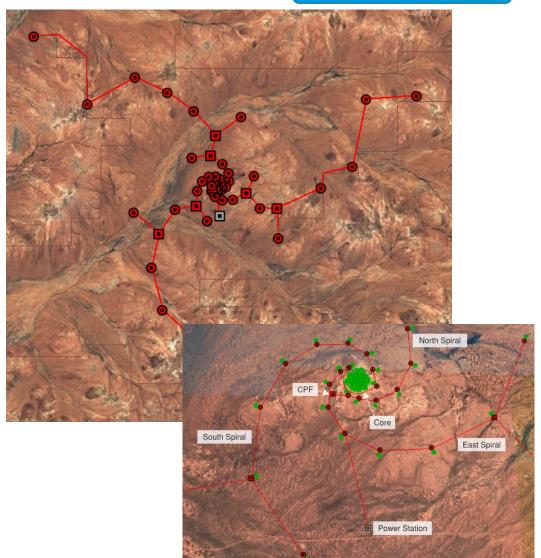



Ground Preparation – scale...

22 MCG's within the central core...

Lords 160 x 130 m Old Trafford 116 x 76 m The Oval 141 x 146 m Wembley 105 x 69 m

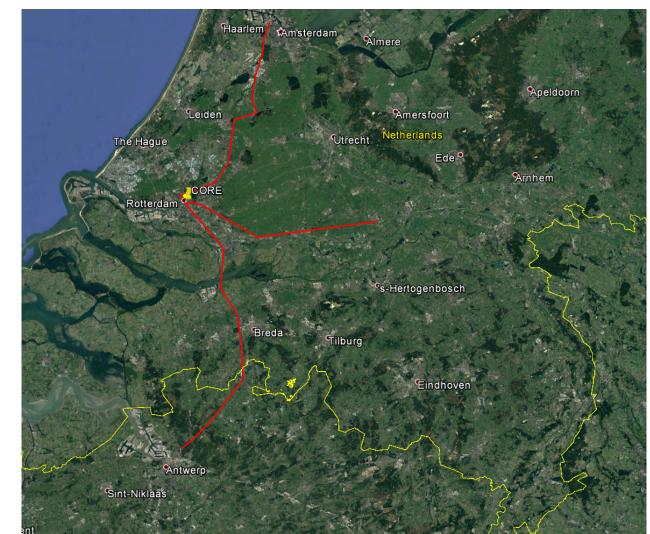
- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary


Power Distribution – Design Update

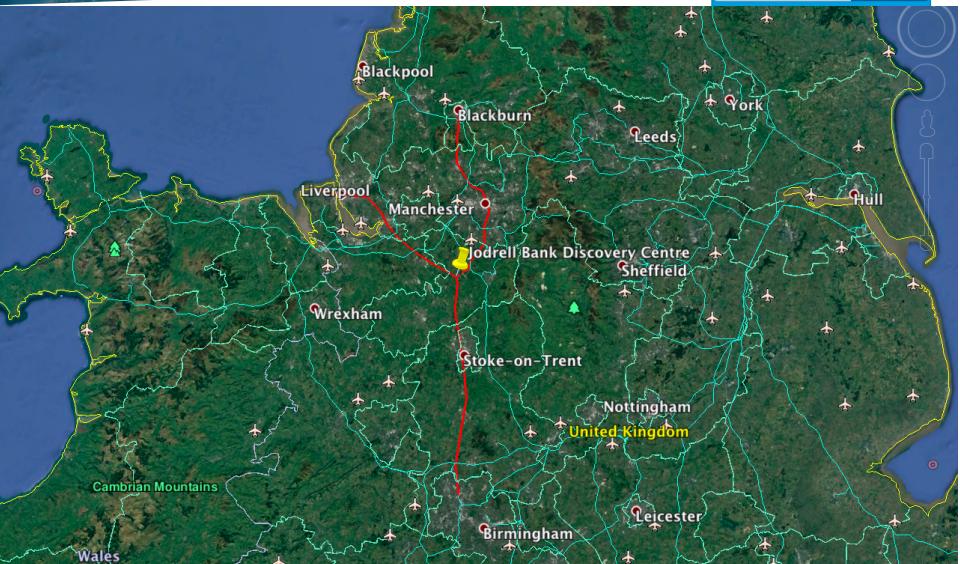
INFRASTRUCTURE AUSTRALIA

Initial power system modelling has been undertaken

- Draft Detail Design report and drawings have been issued
- Supplier investigation has commenced for switchgear and cabling:
 - Improved model
 - Improved costing
- Optimisation of system configuration, component selection and route to be undertaken once design inputs are finalized from other consortia

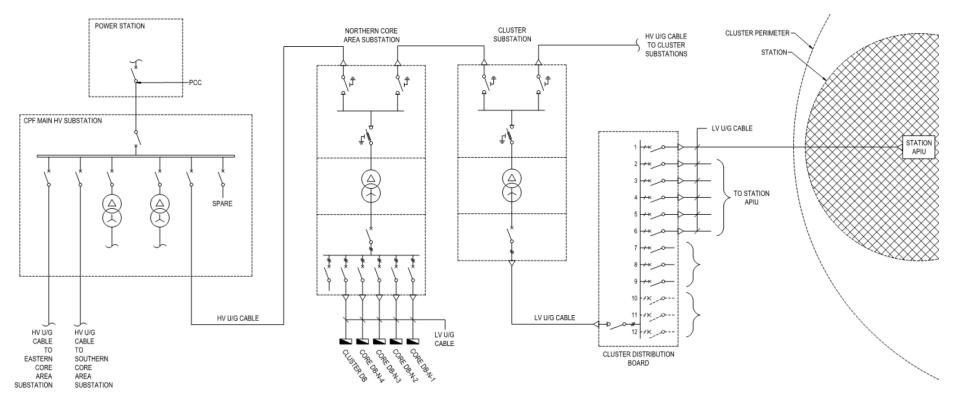


Power Distribution - Overview

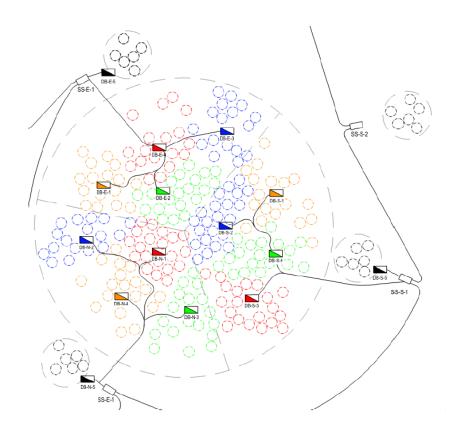

 Power transmitted over a large distance for tiny electrical loads

- Number of unique challenges
- Approximately 200km of high voltage power distribution cabling to be installed
- Enough to reach places as shown from Rotterdam to Amsterdam or

Power Distribution - Overview



Power Distribution – High Voltage Network


• System overview showing the power distribution path from the power station through to a station

Power Distribution – Core

- Power will be distributed in the dense core at low voltage
- A number of topologies and options are being considered to deliver a cost effective solution

Power Distribution – Remote Stations Solar

	Note: Costs in €									
	SKA Solar PV Study							Option 2A 98%	Availability	
	Distance point to point (+15%) (m)	N15-N16 16,940	E15-E16 9,798	E14-E15 13,214	N14-N15 10,684	S15-16 8,200	S14-S15 9,683	E13-E14 7,257	E11-E13 9,350	S13-S14 8,441
	Capital Costs	(570,611)	(14,442)	(280,456)	(83,437)	110,000	(5,486)	183,434	20,446	91,232
	Net Present Value over 25 years (4%)	(570,069)	(13,900)	(279,914)	(82,895)	110,542	(4,944)	183,976	20,988	91,774
	CUMULATIVE CAPITAL COST CUMULATIVE NPV	(570,611) (570,069)	(585,053) (583,969)	(865,509) (863,883)	(948,946) (946,778)	(838,946) (836,236)	(844,433) (841,180)	(660,998) (657,204)	(640,553) (636,217)	(549,321) (544,442)
-10%	Battery Cost - reduction in capital Cost by 10% Capital NPV CUMULATIVE CAPITAL COST CUMULATIVE NPV	(589,104) (599,028) (589,104) (599,028)	(32,934) (42,858) (622,038) (641,886)	(298,948) (308,873) (920,986) (950,759)	(101,929) (111,854) (1,022,915) (1,062,612)	91,507 81,583 (931,408) (981,029)	(23,978) (33,903) (955,386) (1,014,931)	164,942 155,018 (790,445) (859,914)	1,953 (7,971) (788,491) (867,885)	72,740 62,816 (715,751) (805,069)
-20%	Battery Cost - reduction in capital Cost by 20% Capital NPV CUMULATIVE CAPITAL COST CUMULATIVE NPV	(607,596) (627,986) (607,596) (627,986)	(51,426) (71,816) (659,022) (699,803)	(317,441) (337,831) (976,463) (1,037,634)	(120,422) (140,812) (1,096,885) (1,178,446)	73,015 52,625 (1,023,869) (1,125,821)	(42,471) (62,861) (1,066,340) (1,188,682)	146,449 126,059 (919,891) (1,062,623)	(16,539) (36,929) (936,430) (1,099,553)	54,248 33,857 (882,182) (1,065,695)
-50%	Battery Cost - reduction in capital Cost by 50%	(,	()							
	Capital NPV CUMULATIVE CAPITAL COST	(663,073) (714,862) (663,073)	(106,903) (158,692) (769,976)	(372,918) (424,707) (1,142,894)	(175,899) (227,688) (1,318,792)	17,538 (34,251) (1,301,254)	(97,948) (149,737) (1,399,202)	90,973 39,184 (1,308,229)	(72,016) (123,805) (1,380,245)	(1,229) (53,018) (1,381,474)
	CUMULATIVE NPV	(714,862)	(873,554)	(1,298,260)	(1,525,948)	(1,560,199)	(1,709,935)	(1,670,752)	(1,794,556)	(1,847,574)

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Buildings that require major RFI shielding:

- Central Processor Facility (CPF) ~ 1555 sq metres
- Remote Processor Facility (RPF) ~ 36 of 20+ sq m

Other facilities required:

- Storage of spares (appropriate location: MRO, Accommodation, Geraldton EOC)
- Maintenance facilities (location location)
- Accommodation:
 - Temporary construction camp (~200 people, 4 years)
 - [Permanent accommodation facility (~50+ people, 50 years)]
 - Travel distance optimisation :
 - RFI impacts ? Shielding / restrictions may apply
- [Engineering Operations Centre (EOC) and Integration and Test Facility (ITF)]
 - Clear requirement for both for SKA
 - Possible initial use of EOC as ITF (schedule dependent)
 - A path for the provision of these buildings has been started in Australia

Buildings – CPF Rack Budgets

- Central building (CPF) only
- Current estimates

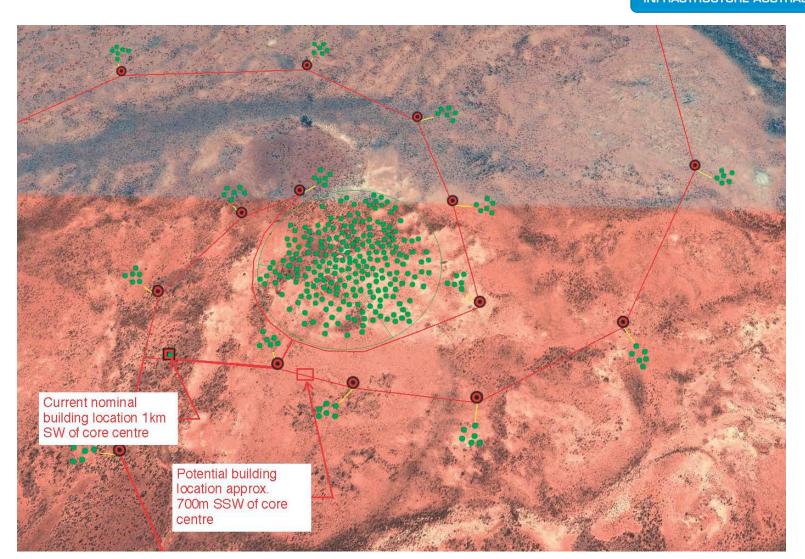
LOW CPF			
Element	Cabinets	Comments	
LFAA Signal Processing	148	From LFAA ICD [AD2]	
LFAA Control System	4	From LFAA ICD [AD2]	
		From CSP ICD [AD3] amended. Incorporates	
CSP-Low.CBF	5	the CSP-Low.LMC requirements	
CSP-Low.PSS	17	From CSP ICD [AD3]	
CSP-Low.PST	2	From CSP ICD [AD3]	
TM Low	2	From TM ICD [AD4]	
SADT Low	9	From SADT ICD (General racks) [AD5]	
SADT Masers*	3	From SADT ICD [AD5]	
		From SADT ICD (Racks supporting the Masers)	
SADT Masers*	5	[AD5]	
INAU Control	1	Work in progress estimate	
Spares	4	TBC (noting margins)	
Total	200	Note 8 of these are associated with the Maser room – hence 192 cabinets in area	

- New facility "close" to Low core
- Building area ~1550+ sq m required.
- Modular building concept, similar to successful strategy for ASKAP
- Minimal additional rooms
 - Operations / Maintenance models require certain key facilities.
- RPFs (aka "huts") required on the spiral arms for housing station ADC, SaDT etc
 - Design may be semi-COTS e.g. containerised
 - · RFI shielding of internals and cooling key
 - Tradeoff study:
 - · Local solar power vs distributed
 - Dependent on power consumption in RPF

Buildings – Design Thinking Workshops

Example CPF Location :

Minimise cost for maximum functionality



A few of the other parameters:

- Maintenance use and Ops impacts
- Distance to spiral arm cables
- Power station relationship
- Local terrain
- etc

CPF Locations

Buildings – Design Thinking Workshops

Topics of Discussion

- Modular Building Design
- Cost Update
- Waveguides for Fibre Re-Entry
- RFI Shield
- Remote Processing Facility
- Community Engagement
- Building Layout Optimisation

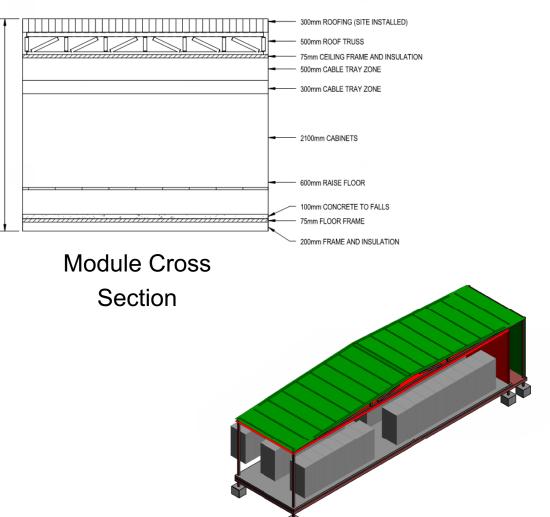
Buildings – Optimum Module Sizes

MODULE HEIGHT FOR

LENGTH OF 15.5m IS 4.450m (ALLOW 4.5 FOR

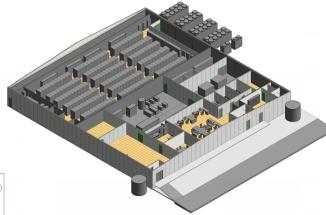
(TO BE LESS THAN RASPORTABLE HEIGHT

WHICH SHALL BE DENTIFIED FROM OUR ROAD ASSESSMENT)

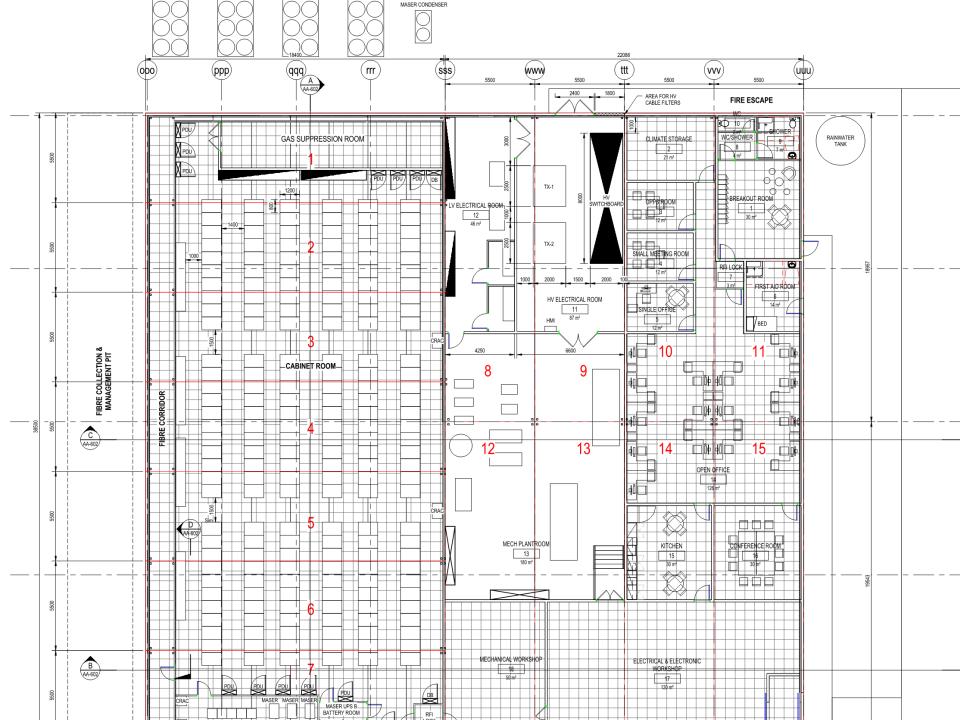

INFRASTRUCTURE AUSTRALIA

Optimum Module Size Considerations

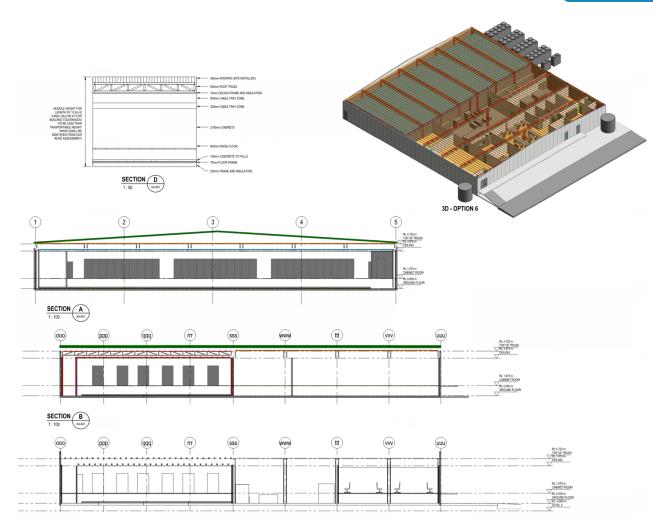
- Factory Construction BUILDING TOLERANCES)
- Logistics
- **Police Escort**


Optimum Size

- Height 5.5m
- Width 4.5m to 5.5m
- Length 15m to 16.5m



Buildings – Building Optimisation



Buildings – Building Optimisation

41

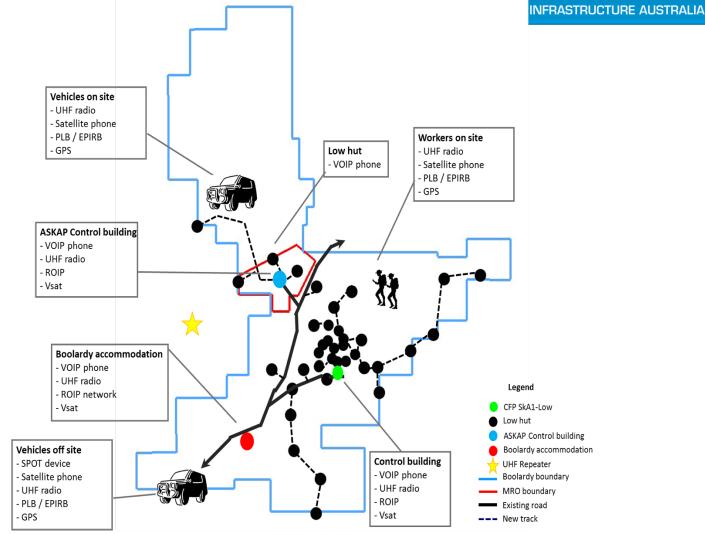
Site monitoring – PDR concepts

• Visual, Weather, RFI, Tropospheric, (Lightning)

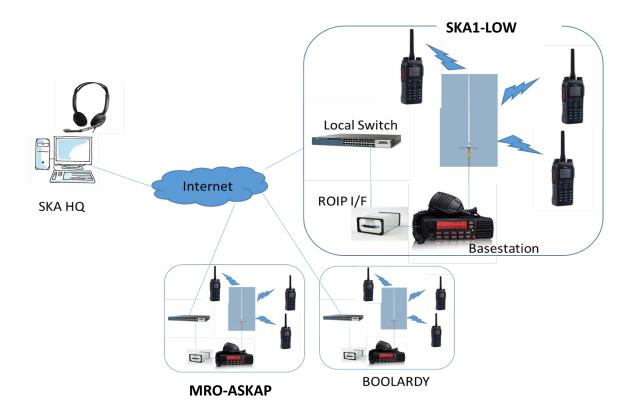
Monitoring

RFI:

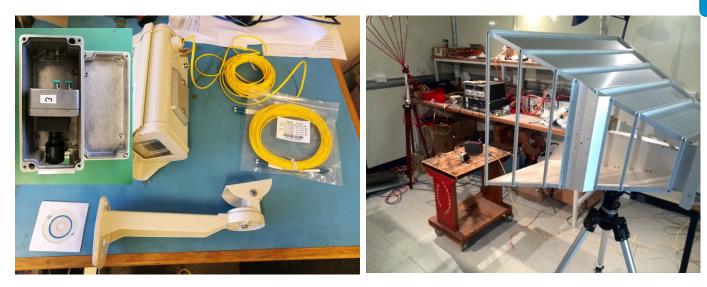
- 27 meter tower
- 600 m west of ASKAP CPF
- 3 antennas (plan:4)
- Fibre optic connection to CPF Weather:
- CSIRO design (modified COTS) Visual:
- Fixed and PZT (minimal)
- CSIRO (modified COTS)
- RFI compliant


Tropospheric:

- Current 2 station unit (near ASKAP)
- 3rd antenna, relocation (?)

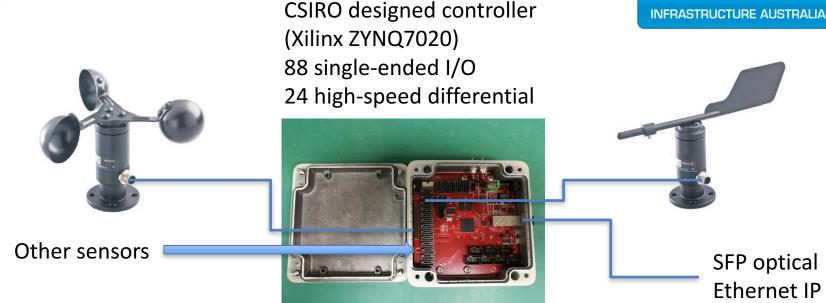

Communications

Enables seamless integration of all radios at the site(s) with HQ operations

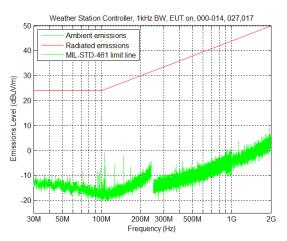


Note: The ROIP IF will use SMF optical SFP to a CFP network switch port ROIP I/F, radio and RF filter(s) in shielded headend box (CSIRO design TBD) Alternative Bands being examined with ACMA and stakeholders

Monitoring (video fixed focus)


EMC compliant fixed FOV IP camera H.264 codec standard Vari-focal shown. CSIRO designed duplex fiber I/F

- RFI is MIL461F 20dB at VHF
- Second stage enclosure takes to better MIL461F-60dB
- Environmental testing to 50C
- Low cost


Monitoring (EMC compliant Weather station)

Development of EMC compliant Weather Station

- RFI at MIL461F 20dB at VHF
- SFP optical output
- Second stage RF enclosure probably required
- Environmental testing to be done
- Sensors being acquired

Outline

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Two power working groups established; both chaired by SKAO:

- Australian Power Strategy Working Group (APSWG), Alistair McPherson
- Power Supply Options Workgroup (PSOW), Adriaan Schutte

APSWG was formed:

- to explore funding options for the provision of power in Australia, including how to minimize whole of life cost.
- members from SKAO, CSIRO, the Department of Industry, Innovation and Science, and the WA Office of Science.

PSOW group is focussed on :

- technical aspects
- investigate power supply options
- covers a broader scope of work (South Africa and Australia).
- RFI

"Prescriptive customer" will NOT produce not cheapest solution

Power Generation – MRO Power Station

- Horizon Power Now operational!
 - 4 diesel generators
 - 2 x 240 kW, 2 x 1005 Kw
 - 250 kW solar photovoltaic online
- CSIRO renewable expansion EMC
 - July 2017 integration
 - Large solar array
 - 5,280 PV panels
 - 1.6 MW peak
 - Very large battery
 - Largest in Australia
 - Lithium ion
 - 2.6 MWh

MRO Power Station

MRO Power Station

2.6 MWhr lithium ion battery

Site status

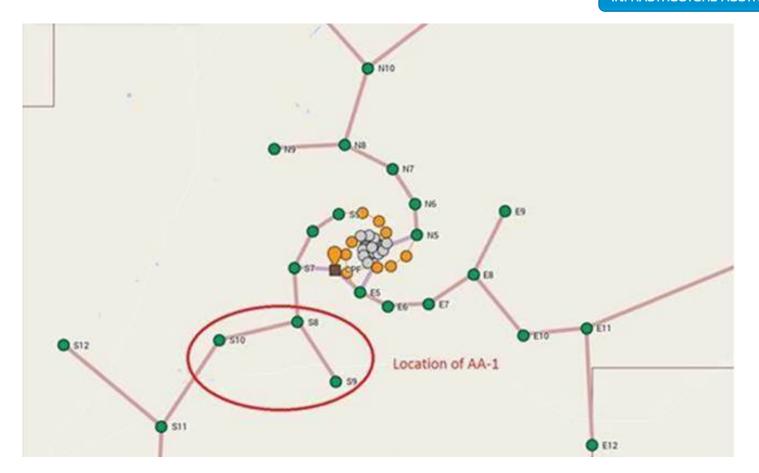
Currently two separate CSIRO Leases:

- Boolardy Station (3420 km**2) pastoral activity only
- Murchison Radio-astronomy Observatory (120 km**2) radioastronomy

New integrated multi-purpose lease being negotiated between CSIRO and WA State Govt

New Indigenous Land Use Agreement (ILUA)

- Being negotiated now between Federal Govt (DIIS), CSIRO and Wajarri Yamatji
- 5 meetings completed
- 2 (?) more to go
- Many areas agreed


Outline

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Early Deployment

- Requirement to support early deployments AR1 etc
- Support with temporary location of RPF

(Image Courtesy AIV)

Outline

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

	Sept 2016	June 2017	% change
Total (includes 21% contingency)	98,816,000	94,056,000	- 4.8
- Power distribution	56,625,000	50,982,000	- 9.9
- CPF (1100 m**2, 1555 m**2)	15,838,000	18,941,000	+ 19.6
- Tracks and road	8,385,000	8,581,000	+ 2.3

Budget : 77,800,000 Euro

Includes preliminaries, profit etc

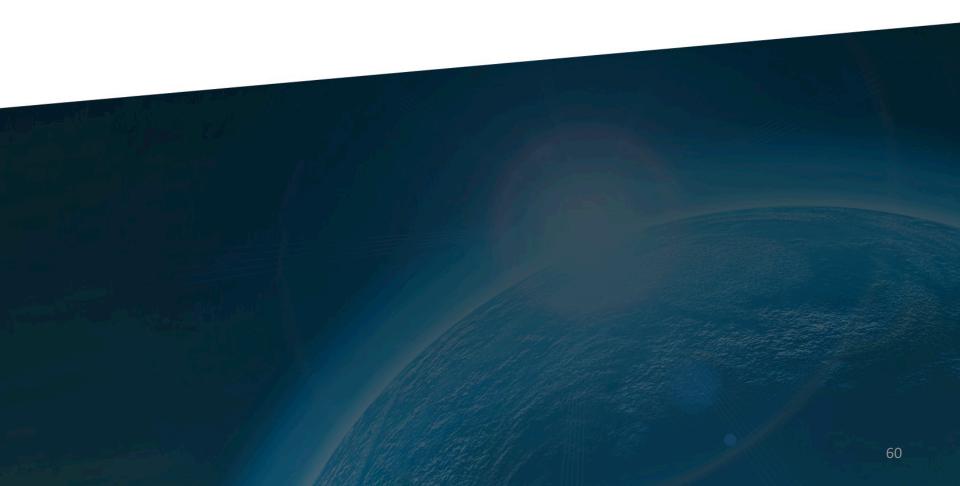
Outline

- HSE
- Introduction
- Who is INAU
- Key areas of design:
 - Location, Roads and access
 - Flood studies and Ground preparation
 - Power distribution and solar PV
 - Buildings
 - Site monitoring, Communications
- Hosting items:
 - Existing Power station
 - Site status and ILUA
- Some deliverables
- Costing
- Issues and opportunities
- Summary

Issues and opportunities

SUBARE KILOMETRE ARRAY

<u>Issues /Risks</u>


- ICD completion
- Cost Control
 - Major change means much design work needs to be re-done
 - Impacts schedule, budget, increased risk
- Design maturity of (some) interfacing work packages
- RFI
- ECP process requires rework, schedule and budget impacts
- Scope changes
- *Heritage survey delays cause increased risk with possible moves of components*
- Geo and hydro survey dependence on heritage process
- Infrastructure last to start, first to deliver
- Pre-con Funding

Opportunities

- Solar power stations for remote outlying Low Stations
- Re-assessment of core requirements
- Introduction of new member country partners (power solutions)
- Whole of Life cost reductions Capex vs Opex

Questions?

