
Towards Interferometry

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Robert Laing March 7 2018

Objectives

- Carry out astronomical tests to:
 - Commission the Low and Mid EPAs
 - Verify system performance to the extent that this is feasible with the available hardware and software
 - Identify components which do not meet requirements/need rework/are unreliable
 - Work with hardware and software engineers to debug, optimise and improve the system.
- Develop methods and working practices for full production
 - Commissioning team organisation
 - Training
 - Test scripts and analysis software

Bring forward planned activities for Array Assembly 1

Key Tests 1

- Correlator products
 - Cross and autocorrelations
 - RFI characterisation/develop heuristics
 - Spurious signals
- Form Low station beams
- Basic interferometry
 - First fringes
 - Broad-band and multichannel images
 - Time and frequency reference stability
- Antenna tests
 - Mid antenna pointing, surface accuracy and stability (interferometric pointing tests and holography) – as high a frequency as possible for accuracy
 - Low station beam optimisation and pointing
 - Measured antenna/station voltage patterns and comparison with EM models

Key Tests 2

- Antenna locations
 - delay calibration and stability
- Complex gain stability (= amplitude/phase closure)
 - Transfer between targets and beams
 - Self-calibration and dynamic range
 - Flux scale
- Bandpass stability
- Polarization leakage
 - On-axis Jones matrices
- System sensitivity
- Form single Mid pulsar timing beam?

Test observations

- Mid observations
 - Pointed observations of bright, unresolved calibrators
 - "Blank" sky
 - Raster scan for holography
 - 5-point for pointing
- Low observations
 - Drift scans (Galactic centre, Sun, Orbcom satellites) and drone observations to monitor station beams
 - Interferometric observations of "A-team" sources
 - Raster scans

Requirements

SUBARE KILOMETRE ARRAY

- Infrastructure
- Antenna (Dish/LFAA)
 - Band 2, Band 5 for Mid (high frequency to enable antenna tests)
- Time and frequency reference
 - reduced requirements
- CSP
 - Limited number of stations
 - Limited bandwidth and fixed channelisation
- Telescope management
 - Basic monitor and control
 - Interfaces (partial functionality)
 - Pointing and delay models
 - Control low beam weights
 - Simple scripting layer
- Data written to measurement set for analysis in CASA
 - Pointing measurement requires a work-round if SDP real-time pipeline is not available
 - Pointing and delay calibration analysis off-line

Organisation, Skills, Schedule

- Commissioning astronomers work with the hardware and software engineers as part of an integrated team
 - Understand the system as a whole and be able to diagnose (possibly complex) faults
 - Experience with technically similar projects
 - Data reduction and scripting skills essential
 - Same location, at least initially
- Very few people meet all of these requirements
 - Need ~2 experienced astronomers for each array
 - Full time for EPA sky tests
 - Train more (younger!) people
- Mid Stage 3 (Q2 2020 Q1 2022)
 - Start earlier (Q1 2020) at lower level (ITF, software tests)
- Low Stages 2-3 (Q4 2019 Q4 2020)

Training and Community Involvement

- Use EPA to train new commissioning team members
- Serious commitment essential
 - At least 3 months full-time initially
 - Exceptions for experienced specialists only
 - Same location as engineering/commissioning team
 - Remote data analysis may then become useful
 - Requires careful management
 - Allocate specific tasks
 - Train/evaluate new commissioning astronomers

We are not trying to do Early Science/Shared Risk Observing!

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

