

The Cherenkov Telescope Array Galactic Plane Survey and Galactic Centre Key Science Projects

Stefano Vercellone (INAF – OA Brera)

stefano.vercellone@brera.inaf.it

Introduction

CTA

CTA Key Science Projects

Synergies

Summary

Introduction

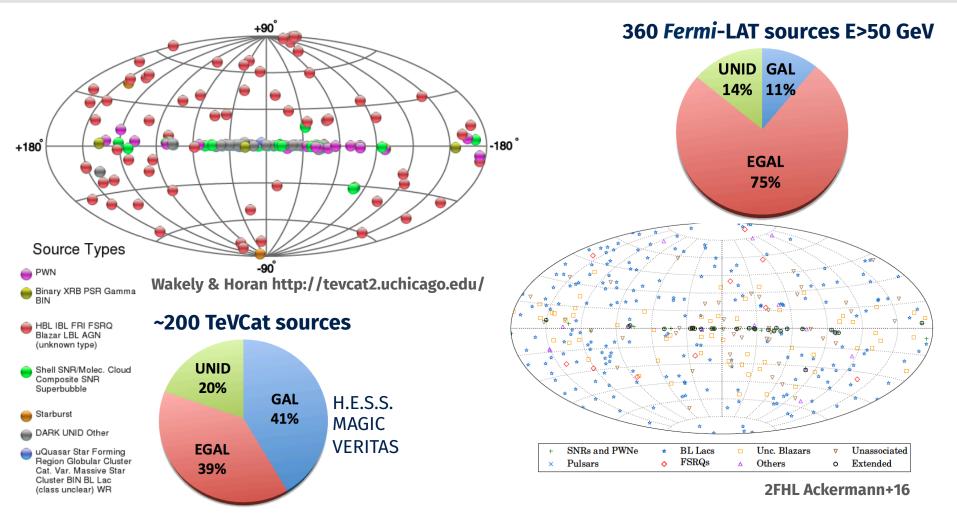
CTA Key Science Projects

Synergies

CTA

Summary

The current IACT status



The sky above 50 GeV

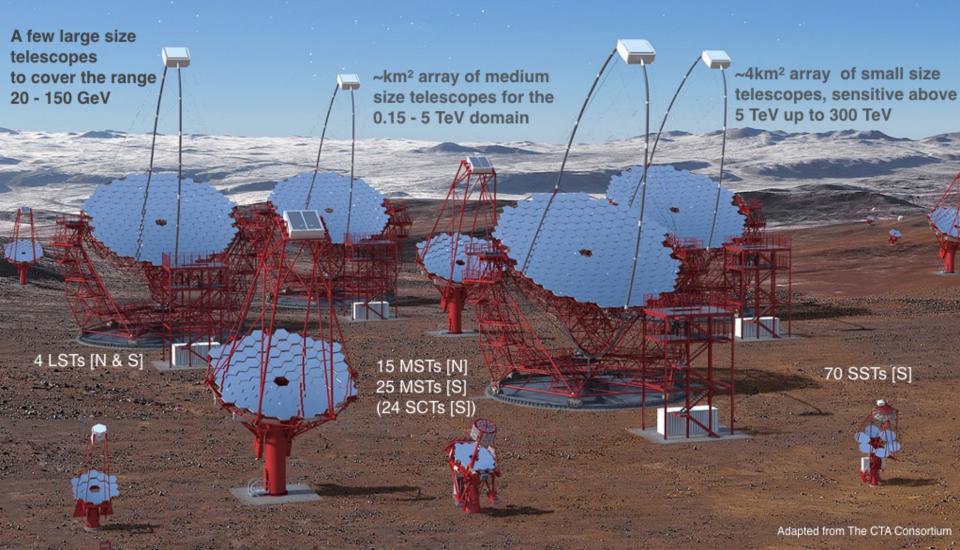
Only ~25% of the 2FHL sources have been previously detected by Cherenkov telescopes. **2FHL provides a reservoir of candidates to be followed up at very high energies.** 5

Introduction

CTA

CTA Key Science Projects

Synergies

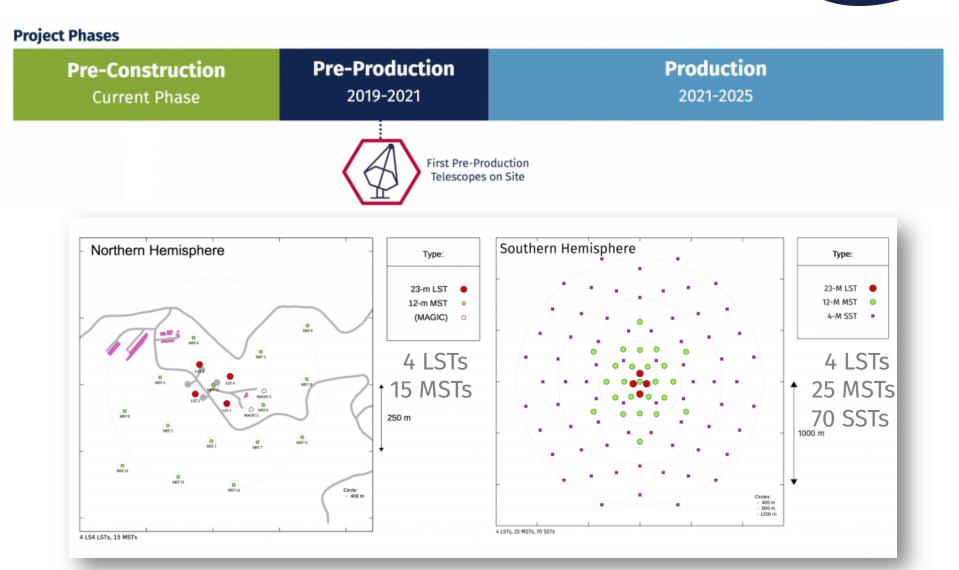

Summary

Two sites (North and South) for a whole-sky coverage

Operated as an open Observatory

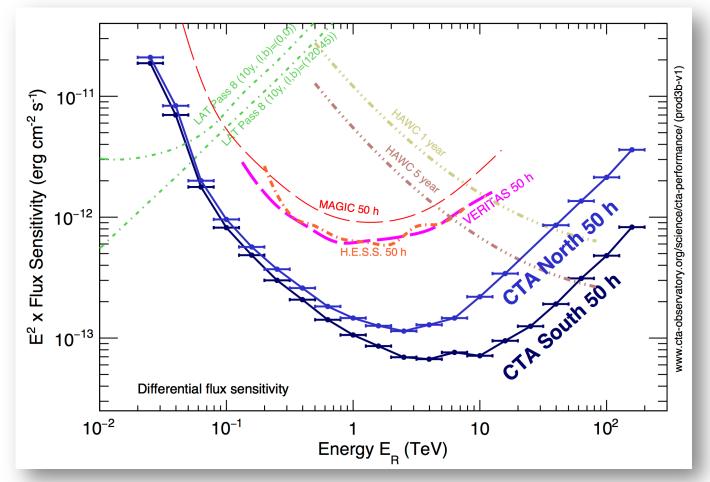
A factor of 5-20 more sensitive w.r.t. the current IACTs depending on the energy band

The Cherenkov Telescope Array



Where to find us

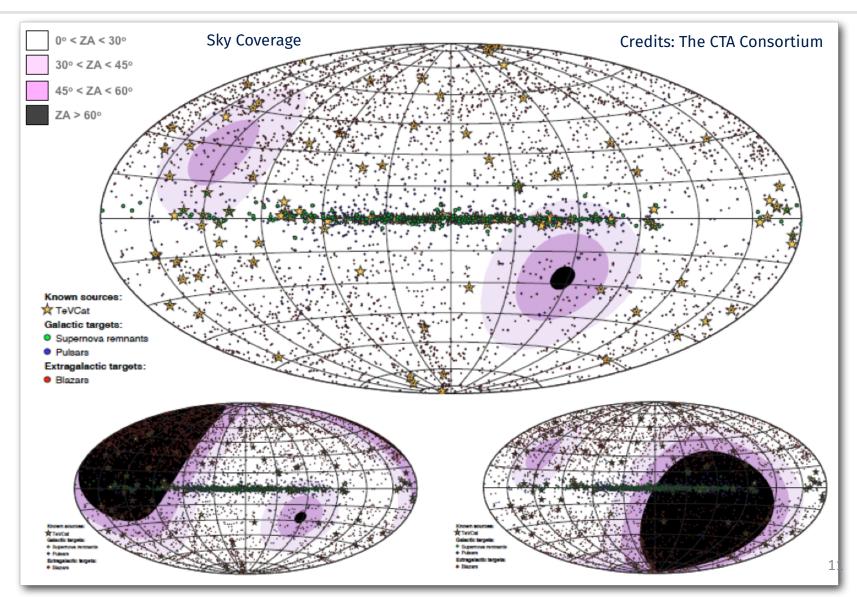
High-level timeline and proposed layout



cta

CTA Performance

Differential Sensitivity

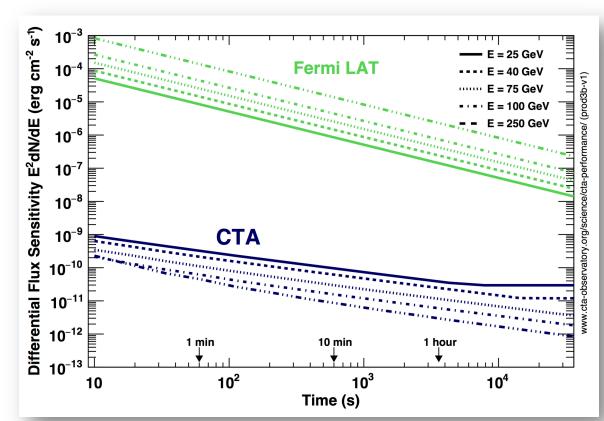

A factor of **5-20 improvement** in sensitivity depending on energy, relative to current IACTs.

Extension of the accessible energy range from well below 100 GeV to above 100 TeV.

https://www.cta-observatory.org/science/cta-performance/

CTA as an *all-sky* Observatory

CTA as a transient factory



Huge advantage over Fermi in energy range of overlap for ~minute to ~day timescale phenomena Explosive transients AGN flares γ-ray binaries Real-time analysis SW is

Disadvantage over Fermi

crucial

Limited FoV (compared to Fermi) Prompt reaction to external triggers is critical

Introduction

CTA .

CTA Key Science Projects

Synergies

Summary

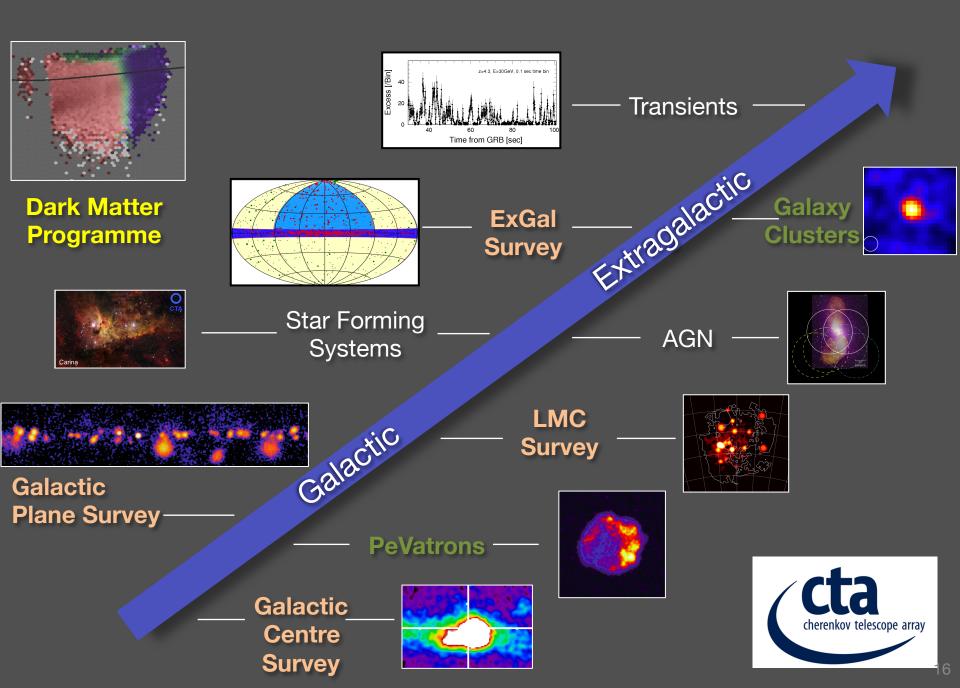
Science Themes

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Processes in relativistic jets, winds and explosions?
- Exploring cosmic voids


Theme 3: Physics Frontiers – beyond the SM

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

- 9 Key Science Projects (KSPs) and 1 DM Programme
 - KSPs are a sets of observations addressing multiple science questions within CTA themes

- Focused on major legacy projects:
 - surveys & population studies (providing legacy data-sets)
 - large classes of sources
 - a few iconic objects
- Large potential for guest observer proposals
 - building on results from the KSP surveys

cherenkov telescope array

Science with the Cherenkov Telescope Array

Science with CTA

200+ pages describing CTA science goals

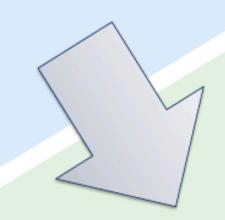
arXiv:1709.07997

To be published as a book & open-access online version by World Scientific.

Introduction

CTA Key Science Projects

Synergies


CTA

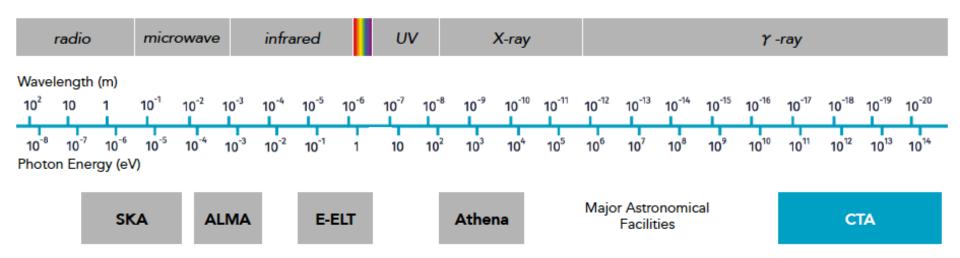
Summary

KSPs vs. proposal-driven programs

Key Science Projects

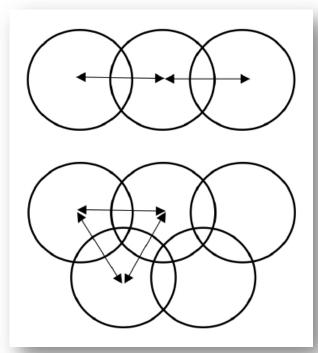
- Ensure that important science questions for CTA are addressed in a coherent fashion and with a well-defined strategy,
- Conceived to provide legacy data sets for the entire community

Example: galactic and extragalactic surveys


- Deep investigation of known sources
- Follow-up of KSP discovered sources
- Multiwavelength campaigns
- Follow-up of ToOs from other wavebands / messengers
- Search for new sources

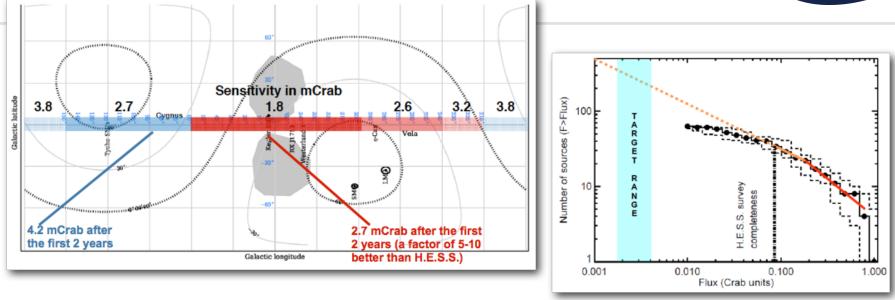
Proposal-Driven User Programme 19

Credits: Hofmann, Gamma 2016


Synergies during CTA operation

These are just a few of the future major multi-wavelength facilities available during the CTA era at lower energies.

Single-row scheme uses a uniformly-spaced single row of pointings that lie along the Galactic plane (b = 0°)


The **double-row** scheme uses pointings that lie above and below the b = 0° line and that have a uniform spacing between adjacent points in the same row and between nearest points in different rows.

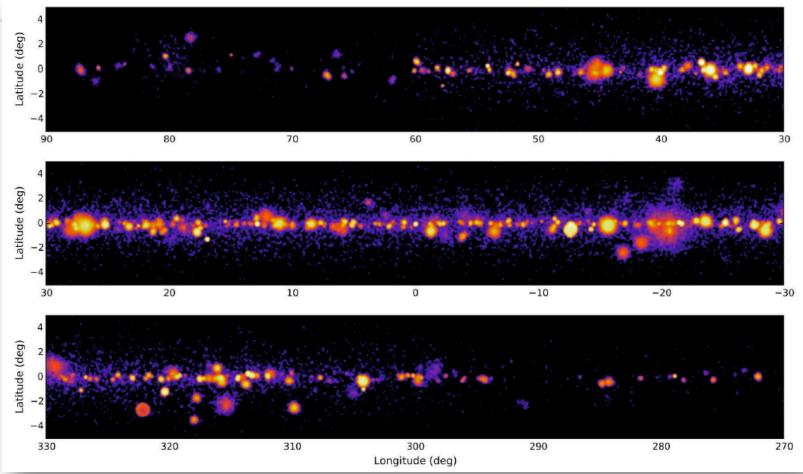
Both pointing strategies will be satisfactory to achieve the desired sensitivities.

Double-row scheme is preferred because it offers better performance at larger Galactic latitudes (|b| > 2°) and more uniform sensitivity along the plane, and it may be more robust during background subtraction.

Optimal separation distance among pointings is 3°

- **Discovery of PeVatron candidates →** origin of cosmic rays
- Detection of many new VHE sources O(300 500), particularly PWNe and SNRs
- Discovery of **new VHE gamma-ray binaries**
- Production of a multi-purpose legacy data set
- Radio/mm and X-ray facilities → PSR ephemerides, PWNe/SNRs morphology/SEDs, MWL phase-resolved studies in binaries, cross-correlation of catalogs and identification of new VHE sources, ...
- Non-thermal X-ray emission → a natural tracer of locations of extreme particle acceleration.

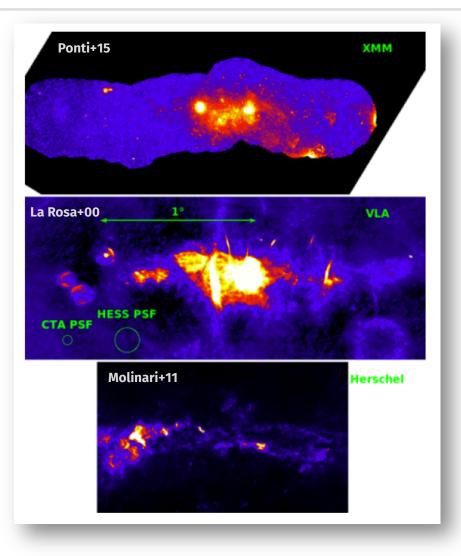
CTA GPS survey


Telescope	Hemisphere	Galactic Plane Coverage	Energy (GeV)	Sensitivity (mCrab)
Fermi-LAT 2FHL	(space)	full plane	> 50	~30 - 40
H.E.S.SI	S	$-95^{\circ} < l < 60^{\circ}, b \lesssim 2^{\circ}$	$\gtrsim 300$	4 - 20
VERITAS	N	$67^{\circ} < l < 83^{\circ}, -1^{\circ} < b < 4^{\circ}$	$\gtrsim 300$	20 - 30
ARGO-YBJ	N	northern sky	> 300	240 - 1000
HEGRA	N	$-2^{\circ} < l < 85^{\circ}, b < 1^{\circ}$	> 600	150 – 250
Milagro	N	northern sky	> 10,000	300 - 500

Current GPS surveys

	STP		LTP		Total
	(Years 1 – 2)		(Years 3 – 10)	(Years 1 – 10)	
Galactic Longitude	Hours	Sensitivity	Hours	Hours	Sensitivity
SOUTH					
300° – 60°, Inner region	300	2.7 mCrab	480	780	1.8 mCrab
240° – 300° , Vela, Carina			180	180	2.6 mCrab
210° – 240°			60	60	3.1 mCrab
				1020	
NORTH					
60° – 150°, Cygnus, Perseus	180	4.2 mCrab	270	450	2.7 mCrab
150° – 210°, anti-Centre, etc.			150	150	3.8 mCrab
				600	
-	•		1		

Observatory	Hemisphere	Energy Thresh.	Ang. Resolution	Pt. Source Sensitivity	CTA/HAWC
CTA HAWC	N, S	125 GeV 2 TeV	$\sim 0.07^{\circ}$ at 1 TeV 0.30°	2 – 4 mCrab 20 mCrab	survey performance
HAVO	IN	2 lev	0.30°	20 1101ab	



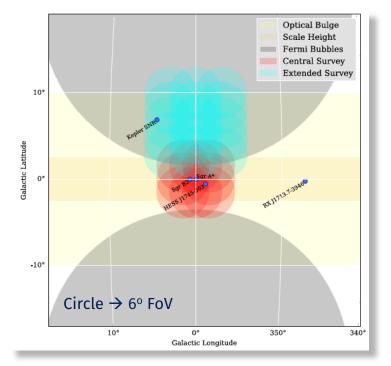
Simulated CTA image of the Galactic plane for the inner region 90° < l < 90°, adopting the actual proposed GPS observation strategy, a source model incorporating both **supernova remnant and pulsar wind nebula populations and diffuse emission**

Galactic Centre Survey

Multi-wavelength view of the **inner Galactic Centre region**, showing the **wide variety of diffuse emission**.

The CTA point spread function is shown in comparison with that of the presently operating H.E.S.S. telescope to illustrate the **possibility of resolving structures with CTA that are point-like with existing instruments**.

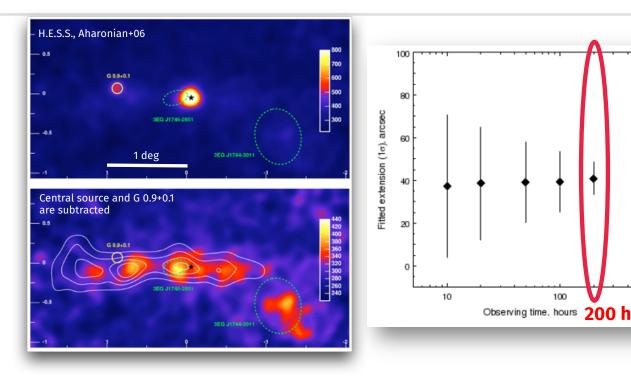
Galactic Centre Survey


	Deep Exposure	Extended Survey
Time requested	525 h	300 h
Priority	1	3
Strategy	survey	survey
Site	S	S
Sub-array	Full	Full
Zenith Range	$< 40^{\circ}$	$< 50^{\circ}$
Atmosphere Quality	high	high
Targets Covered	multiple	multiple

Central survey region: a deep exposure of 525 h, centered on Sgr A*($l = \pm 1.0^{\circ}$, 0° and $b = \pm 1.0^{\circ}$, 0°).

1st **year** \rightarrow updated analysis of the central source. **3**rd **year** \rightarrow detailed study of the extended/diffuse emission will be possible + data for DM search.

Extended survey region: 300 h of exposure covering a large region to the south or north of the GPS region out to 10° in latitude.

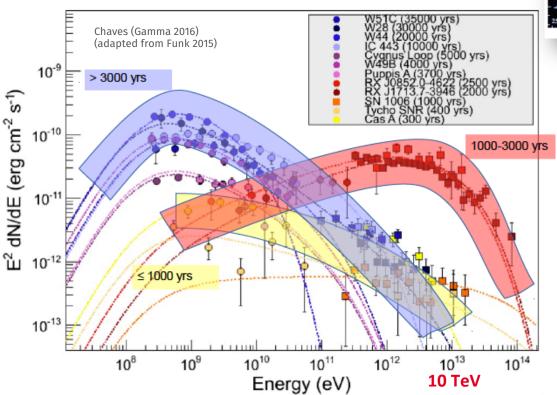

These observations can be taken after the deep exposure, i.e. after the third year of operation.

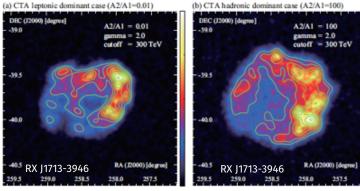
The CTA Consortium

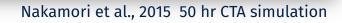
Galactic Centre Survey

Expectation for the **fitted size of the central source** (assuming a Gaussian shape) made by CTA as a function of observing time.

With 200 h, CTA should reach a detection of the source extent with a statistical significance of approximately four standard deviations


- Determination of the nature of the central source
- A detailed view of the VHE diffuse emission
- Search for variability in the VHE source near Sgr A*
- Studying the interaction of the central source with neighboring clouds
- Global VLBI array at mm/sub-mm frequencies, → direct imaging of the jet-launching regions of key sources such as Sgr A*
- AGNs **optical polarisation** studies of jets → derivation of **magnetic field parameters** that can be used to improve SED modeling and emission-region localisation 27


Cosmic-ray PeVatrons



What sources may accelerate hadrons to the knee? SNRs are standard paradigm, but only a handful

provide strong evidence for hadron acceleration so far, and only up to ~ 10 TeV

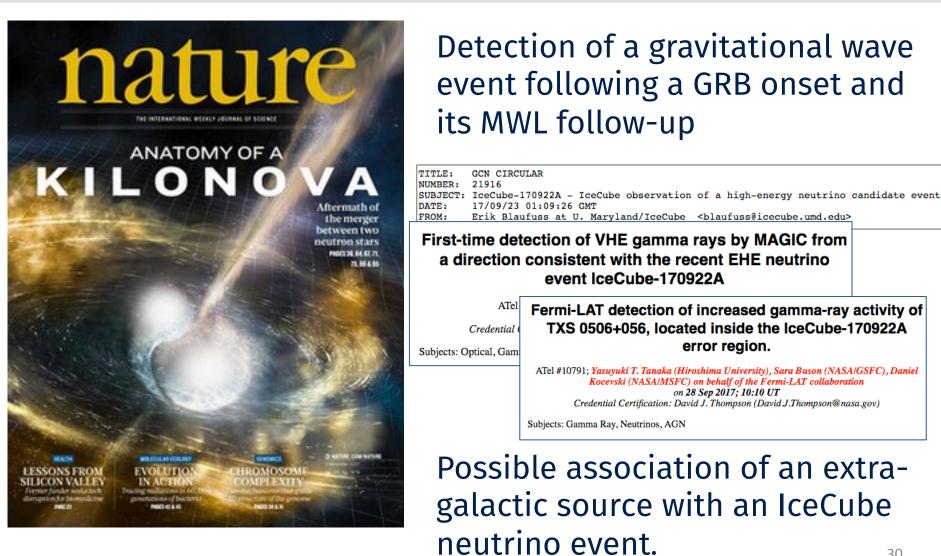


The detection up to E ~100 TeV would imply:

- **the emission is hadronic**, because the leptonic emission is strongly suppressed at such high energies due to the Klein-Nishina effect;
- **the SNR is a PeVatron**, because ~100 TeV photons are produced by ~PeV protons₂₈

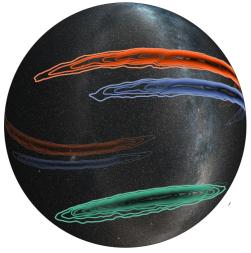
Cosmic-ray PeVatrons

Simulated **reconstructed spectra for CTA for a PeVatron-like source** with a flux equal to the Crab nebula, using two photon indices.


Three different exponential energy cutoff values are used, as indicated by the colors.

Target	Туре	Exposure (h)	Array	Year	Configuration
RX J1713.7–3946	SNR	50	S	1-3	Full array
PeVatrons	Unknown	5×50	S	> 3	MSTs + SSTs

Use **GPS as finder** and **follow-up 5 brightest sources with no cut-off.** MWL information critical for identification.


Multi-messenger Astrophysics window is open !

Transients

Credits: The LIGO Scientific Collaboration

Transients are a diverse population of astrophysical objects. Some are known to be prominent **emitters of high-energy gamma-rays**, while others are sources of non-photonic, multimessenger signals such as cosmic rays, **neutrinos and/or gravitational waves.**

Transient Factories & SKA will generate an overwhelming number of triggers.

The **definition of appropriate response criteria** is the key to understand the potential for VHE follow-up

Observation times (h yr ⁻¹ site ⁻¹)									
Priority	Target class		Early	phase	Years	s1–2 Year	rs 3–10 `	Years 1-1	10
1	GW transients		20		5	5			
2	HE neutrino transients		20		5	5			
3	Serendipitous VHE tran	nsiens	100		25	25			
4	GRBs		50		50	50			
5	X-ray/optical/radio trans	sients	50		10	10			
6	Galactic transients		150		30	0(?)			
Follow-up priority	Target class	Detected @ HE	Trigger	Rate (yr ⁻¹)	Urgency	Activity duration	Obs. time (h /night	n) Total time (h)	Site
1	Magnetar giant flares	-	MeV	0.1	1 min	1–2 d	Max. 1	10	A/B
2	PWN flares: Crab nebula	Y	HE	1	1 d	5–20 d (HE)	4	50	S&N
3	HMXB microquasars: Cyg X-3	Y	HE/X-ray	0.5	1 d	50-70 d (HE)	Max.1	50	N
	Cyg X-1	Y	HE/X-ray	0.2	1 d	1–10 d ?	Max. 1	30	N
4	Unidentified HE transients	Y	HE	1	1 d	?	2	20	A/B
5	LMXB microquasars	?	X-ray/radio	1	1 d	Weeks	2	20	A/B
6	Novae	Y	HE/opt.	2	1 d	Weeks	2	20	A/B
7	Transitional pulsars	Y	Radio/opt.	0.5	1 d	Weeks	2	20	A/B
8	Be/X-ray binary pulsars	N	X-ray	1	1 d	Weeks	2	20	A/B

Introduction

CTA Key Science Projects

Synergies

CTA

Summary

CTA will be an **Observatory** open to the scientific community.

Science will focus on cosmic particle acceleration, extreme environments, and physics beyond the standard model.

Proprietary time (significant fraction in the first years) will be articulated in **Key Science Projects.**

Large potential for **Guest Observer proposals** – e.g., building on results from the KSP surveys.

CTA will have important **synergies** with many astronomical and astro-particle facilities.