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■ Why should we invest time in analysis software?
○ Most analysis (.e.g cataloguing) still requiring significant manual intervention 

➢ Not feasible already at the scale of precursors (>106 sources expected in EMU)
➢ Analysis reproducibility

○ Some areas not fully covered in SDP Science Pipeline (i.e. left to either SWGs or RCs)
○ Regional Center activities (at least in Europe) more focused on design (i.e. no development)
○ Analysis tools currently in use have limitations

➢ Not scaling well vs image size (even at the scale of precursors) or source density?
➢ Not well tested or poorly performing on Galactic fields
➢ Delivering poor output for post-processing analysis (e.g. classification studies, etc)
➢ Need adaptation or re-designing for Regional Centers 

○ Because all medium- and large-scale experiments did (and continue to do so...)

■ What kind of software (not only for analysis) do we need?
○ Extraction of compact and extended sources
○ Improved imaging on the GP (single dish + SKA combination) (see Ingallinera’s talk)
○ Source correlation across frequency channels, observations or surveys
○ Object classification
○ Visualization and exploration tools (see Vitello’s talk)
○ Many others...

■ Software tools for source extraction and characterization 2

Outline



■ Several finders publicly available for compact source extraction
○ Sample tools: Selavy (ASKAP), PySE/PyBDSF (LOFAR), Aegean, Blobcat, CuTEx (...)
○ Mostly based on flood-fill algorithms
○ Tested with simulations with extragalactic-like fields (ASKAP Data Challenge)

➢ Comparable performances (reliability, completeness, position & flux, ....)
○ Current limitations and areas of development

➢ Reliability, deblending, fit robustness to be improved
➢ Few able to run in parallel on different processors (e.g. PySE) or nodes (e.g. Selavy)
➢ Few providing an API
➢ No detailed testing in presence of significant diffuse/extended emission

■ Lack of tools for both compact and extended sources
○ Different algorithms proposed (e.g. active contours, region segmentation, Hough Transform, 

Wavelet Transform, ...) but detailed testing required

■ CAESAR Source Finder 
○ CAESAR: Compact And Extended Source Automated Recognition
○ Developed for SCORPIO and ASKAP EMU surveys
○ Ref: S. Riggi et al, MNRAS 460, 1486-1499 (2016), https://github.com/SKA-INAF/caesar.git
○ Implemented in C++, based on ROOT/OpenCV (+ other libraries) 
○ Recent development: logging, parallel implementation, algorithm improvements, ...
○ Tested with SCORPIO data, detailed testing with simulations ongoing 3

Status of radio source finders

https://github.com/simoneriggi/ska.git
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CAESAR processing pipeline
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Testing with SCORPIO fields
Results on sample SCORPIO field (1600x1850 pixels): centred on SNR 
G344.7-0.1, MSC 345.1-0.2 SNR Candidate

White lines: manual segmentation

Chan-Vese 
contour finder

Hierarchical 
clustering 

Wavelet Transform

NB: Algorithms for compact sources completely misses extended object in 
most cases
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NB: Ideal simulations

■ Sky model generation
○ Map size: 2560x2560 pixels, pix size= 1 arcsec
○ Point-sources

■ density=1000/deg^2, uniform spatial distr.
■ S=[100 μJy,1 Jy] exp distr.

○ Extended sources
■ density=50 deg^2, uniform spatial distr.
■ Flux ampl=[1 μJy,100 μJy] exp distr. 
■ 4 different types (disk+shell, ring, gaus, 

sersic profile), max scale 10’
○ Data size <~ 100 MB/map

■ Simulation (done with CASA)
○ 12 h ATCA all baselines configuration
○ Raw data ~ 2GB/map

■ Imaging (done with CASA)
○ Fields cleaned up to 10 mJy using true source 

masks and combined with linearmosaic
○ rms ~ 300-400 μJy
○ Raw data ~ 1.5 GB/map, final map ~ 30 MB/map

100 simulated maps generated up to now
~ 5 CPU hours per map on OACT cluster

50000 CPU hours available (proposal 
approved) on INAF computing facilities
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Sample map with generated (convoluted) 
sources (see next slide)

Testing with simulations



Typical parameters
■ Background

➢ box size=20 x beam size (beam 
size~12’’)

➢ 3-sigma clipped stats
■ Compact source search

➢ seed/merge thr= 5/2.5 sigma
➢ pix min=5
➢ niters=3

■ Nested sources
➢ Method: LoG
➢ min/max scales: 1/2 x beam
➢ nested/mother>20 x beam area
➢ seed/merge curv thr= 5/2.5 sigma

■ Fitting
➢ max components=5
➢ source area<10 beam (for joint fit)
➢ peak significance thr>1 (wrt source)
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Compact source extraction

Sample simulated sub-field
  Blue: compact (not point-like)
  Red: point-like
  Green: point-like fitted
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VERY PRELIMINARY

Compact source extraction
~35640 compact sources in simulated sample (cumulated over 100 maps)

Match criteria
● Positional difference<10”

Selection cuts
● Preselection

➢ Point source tag + fit available
➢ Only sources tagged as point-like used for reliability evaluation
➢ Exclude sources at the image borders

● Selection
➢ Identified as point-source by simple cut or neural network classifiers

 

Completeness/ 
Reliability vs 
generated/measured 
source flux density
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VERY PRELIMINARY

Compact source extraction
~35640 compact sources in simulated sample (cumulated over 100 maps)

Match criteria
■ Positional difference<10”

Selection cuts
■ Preselection

➢ Point source tag + fit available
➢ Only sources tagged as point-like used for reliability evaluation
➢ Exclude sources at the image borders

■ Selection
➢ Identified as point-source by simple cut or neural network classifiers

 

Positional/flux density 
accuracy vs generated 
source flux density



● Saliency filter algorithm under test
● Parameters

○ Residual map: kern size=9, high/low thr=10/5 sigma
○ Smooth filter (same of SCORPIO maps): radius=12 pixels, eps=0.04
○ Saliency map

➢ Min/max/step scales: 20/60/20 pixels
➢ Threshold=3 x median
➢ No bkg/noise/curvature maps combined
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Extended source extraction

Saliency filter map

Detected sources
Green: extended
Purple: extended+compact
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VERY PRELIMINARY

Extended source extraction
#1670 extended sources in simulated sample (cumulated over 100 maps) 

Match criteria
■ pixel overlapThr=0.1

■ ~ 20% source missed (majority are ring/arc-shaped sources)
■ Many false detections, need a method to identify them
■ Outliers in flux accuracy observed (possibly due to nested point-sources or wrong 

identifications) 
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Computing performances
Parallel speedup vs number of threads (for different finding tasks)
■ 1 Node: 4 sockets x 10 Core Intel(R) Xeon(R) CPU E5-4627 2.60GHz, 256 GB DDR4 2133 MHz
■ Image size: 2560 x 2560 pixels (similar results for 10000 x 10000 pixels)
■ Moderate speedup (up to 6-8 threads) for some tasks (bkg finding, source fitting)
■ Threads allocated according to NUMA architecture
■ Source fitting dominates in total cpu time 

Parallel speedup vs number of MPI processes (for fixed OpenMP threads)
■ 2 Nodes (same architecture as above)
■ 4 threads per MPI process
■ MPI processes allocated according to NUMA architecture
■ Image size: 10000 x 10000 pixels partitioned into 2500x2500 tiles
■ Good speedup observed 
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■ Some progress made since CAESAR reference paper 
○ Many to-do-list items were processed (e.g. public distribution, parallelization, ...)
○ Some areas requiring further work (e.g. memory usage, optimizations, source matching, 

extended source performances, etc) 
○ Testing with simulations is ongoing and requiring a considerable effort

■ Road map & additional features
○ Short-term

➢ Additional Input/output formats (e.g. CASA, HDF5, VTK, VO, etc)
➢ Complete task parallelization (e.g. blob masking, extended finders)
➢ Algorithm improvements
➢ Complete and improve documentation 

○ Medium term 
➢ New extended source algorithms (once testing on existing is completed)

○ Long term
➢ GPU version, distributed version with alternative programming models & 

frameworks

Summary
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■ A SKA working group for data reduction and analysis software 
development? 
○ Should focus on all data reduction, analysis and computing aspects that:

➢ Are to be performed at the Regional Centers 
➢ Are not deeply considered by SDP
➢ Are common to different Science Groups

○ Is there a similar working group in SKA?
○ Possible issues

➢ Working groups are geographically spread and not actively interacting
➢ Open Observatory (e.g. PI-based projects) vs Wide Collaboration (like in LHC)  

○ Activities to be carried out over a time scale of ~5 years
➢ Using real data produced by precursors & SKA simulations

○ A SKA data analysis framework as possible goal
➢ Tight coordination with regional centers

For discussion...
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BACKUP SLIDES



■ Distributed source finding
○ A series of tasks (=tiles to be processed) are assigned to each worker node

➢ Raw task distribution, no intelligent scheduling on available resources & load
○ Assigned tiles can overlap each other

■ Input maps supported
○ Only 2D maps supported, formats: FITS, ROOT TH2, OpenCV, jpg/png/...
○ FITS images can be read in parallel on single- (each thread reads a tile) or multi-hosts 

(each host reads and keep only assigned tiles)
➢ Single-host: each thread reads a tile
➢ Multi-host: each host reads (in multithread if desired) and keep in memory only 

assigned tiles

■ Image stats calculation
○ Stats moments computed while reading image with online parallel formulas
○ Robust estimators (median/mad) calculation speed-up wrt to original implementation
○ Benchmark tests done against python numpy

■ Background/noise maps
○ Cubic interpolation on a 2D grid made with sampling image tiles (size=multiple of beam 

size)
○ Sampling grid calculation done in parallel (not for interpolation)
○ If needed, significant blobs (e.g. >5 sigmas) can be excluded from background estimation
○ Benchmark tests done against BANE
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Reading input maps, stats/bkg



■ Different image filters & processing available to support 
finding
○ Wavelet Transform
○ Compact source filter
○ guided/gaus
○ LoG/grad
○ morph/dilation
○ Saliency
○ Superpixels

■ Residual map
1. Compact source removal

➢ Replace bright sources with given tag (e.g. point-like) and above significance 
levels with configurable dilation kernel size

➢ Using a dilation filter with configurable ellipse kernel size
2. Smooth image to limit texture-like features
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Image filtering & residual map



■ Compact source finder
1. Blob detector: flood-fill algorithm (ala Aegean/Blobcat) iterated up to N times and until 

no more blobs are found (threshold decreased at each cycle)
2. Blob selection: good/bad/point-source selected according to simple parameters 

(area wrt to beam, roundness/elongation, bounding box)
3. Nested blob search: based on image curvature thresholding

■ Extended source finder: different algorithms available
1. Filtering + thresholding: Multi-scale saliency, Wavelet Transform

○ Method: filter image to enhance diffuse emission and apply threshold
○ Pros: conceptually simpler, threshold-based
○ Cons: object boundary can be not so accurate, sensitive to residual map quality

2. Region-merging: Hierarchical Clustering (not ready yet)
○ Method: hierarchical superpixel/region merging by similarity
○ Pros: dealing with disjoint areas
○ Cons: intensive computing, many parameters to be optimized, sensitive to residual 

map quality
3. Contour finding: Chan-Vese/LRAC

○ Pros: relatively fast, object boundaries detection
○ Cons: highly dependent on initial contour, insensitive to nested objects, varying 

object intensity levels, sensitive to residual map quality
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Compact and extended finders



■ Source merging: 2 aggregation stages can be performed
1. The first is performed by each task on each tile to merge extended sources found to 

compact sources detected at the blob finder stage
➢ Helpful if compact finder detects only bright regions and extended finder only the 

diffuse part 
2. The second is performed by master process after gathering all sources detected by 

workers 
➢ Aggregate sources tagged at edge by workers
➢ Aggregate sources overlapping in the tile overlap region (if present)

■ Source parametrization
1. Source moments (standard, Hu), centroid, integrated flux
2. Contour morphology parameters (e.g. Zernike pols)

■ Source fitting & deblending (only for compact sources)
1. Peak finder using a multi-kernel image dilation method
2. Peaks sorted by significance and selected (e.g. up to a configurable number of 

components N, sufficiently far each other, above a given significance)
3. Multi-component 2D gaussian fit (using MINUIT)

➢ Model: const offset + N gaussians
➢ Gaussian parameters limited around peak amplitude and beam (limit range 

configurable)
➢ Offset fixed to user-provided value or estimated bkg average or free to vary

■ Delivered outputs
○ FITS images, DS9 regions (colored & tagged by source type)
○ ROOT file with image & source object collections 19

Source merging & parametrization



● Batch mode (standard or container run)
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How to run CAESAR?

● Interactive mode (useful for simple tasks/testing/drawing/macros)

[...]$ root
root [0] Image* img= new Image
root [1] img->ReadFITS("recmap.fits")
root [2] img->ComputeStats(true)
root [3] ImgBkgData* bkgData= 
img->ComputeBkg(eMedianBkg,true,100,100,10,10)
... ...

ROOT cli python cli
[...] $ ipython
In [1]: from ROOT import gSystem
In [2]: gSystem.Load('libCaesar')
In [2]: from ROOT import Caesar
In [3]: img= Caesar.Image()
In [4]: img.ReadFITS('recmap.fits')
In [5]: img.ComputeStats(True)
In [6]: bkgData= 
img.ComputeBkg(Caesar.eMedianBkg,True,100,100,10,10)
... ...

● Submission scripts available for running on batch systems
● Other apps provided for standard or container run

○ fits2root/root2fits
○ skymodel, simulation, imaging, convolver
○ bkgfinder, saliencyfinder
○ catalogcorr

[...]$ FindSourceMPI --config=myconfig.cfg 
... ...

Standard run
[...]$ singularity apps caesar.simg  (to list available apps)
[...]$ singularity run --app sfinder caesar.simg 
          --config=myconfig.cfg 
... ...

Run inside Singularity container


