
Planning the Verification of the SKA1 Telescopes

2019 SKA Shanghai Meeting

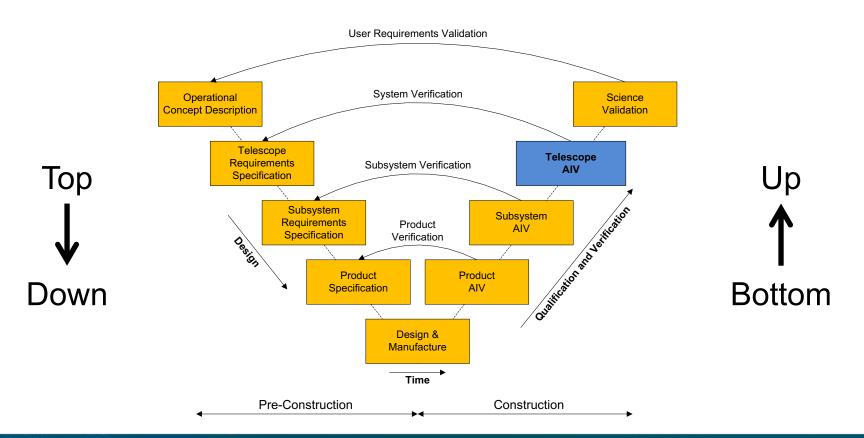
SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Richard T. Lord 26 November 2019

Introduction

- Risk-based approach to verification planning
- Illustration and clarification of some of the key concepts regarding verification planning
- Lessons Learned


It's all about Managing Risk

Are we building the right thing?
 – Qualification of Design

Are we building it correctly?
 – Verification of Requirements

The Famous V-Diagram

Element CDRs

- Should provide evidence that design requirements have been met
- Heavy reliance on analysis
- Interfacing products do not exist
- Simulators/Emulators might mask problems
- Prototype hardware used
- Different levels of rigor applied

⇒ System-level risks remain after product-level designs have been qualified

Product Hand-Over Process

- Important quality gate
- Well-tested products -> less system I&V issues
- Factory Acceptance Testing
- On-Site Acceptance Testing
- Product can be supported and maintained after hand-over

Sequential Roll-Out

- Verify the system in stages
- Detect problems early
- Apply design changes early

Commissioning, System Verification and Science Verification

Array Assemblies (AAs)

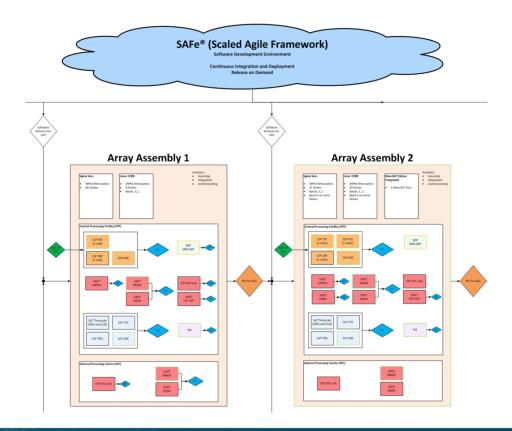
- Fixed number of Dishes / Stations
 - Determined by Correlator size
 - But: Flexibility regarding which Dishes / Stations
- Defined Capability / Functionality
 - Basis for the delivery of products and planning of I&V activities
- Start Date
 - When all AA components are available
 - But: Maintain I&V flexibility regarding exact product delivery date

Observing Modes for each AA

	# Dishes	Frequency Bands	Imaging	Pulsar Timing	Dynamic Spectrum	Pulsar Search	Transient Capture	VLBI
AA1	8	Band: 1 + 2	 Basic Continuum and Spectral Line imaging Using CASA 16k channels 400 MHz bandwidth 	 Basic 1 boresight non- steerable beam 400 MHz bandwidth 				
AA2	64	Band: 1 + 2 Band: 5 (on 32 Dishes, but may not be supported by correlator)	 Basic Continuum and Spectral Line imaging Using CASA 16k channels 800 MHz bandwidth 	 6 steerable beams With de-dispersion 800 MHz bandwidth 		 16 steerable beams Not fully pipelined Non-real time operation Full bandwidth 		
AA3	128	Band: 1 + 2 Band: 5 (on 64 Dishes)	 Continuum and Spectral Line imaging pipelines 64k channels Zoom mode 5200 MHz bandwidth 	 16 steerable beams With de-dispersion Full bandwidth 	 Maybe 	 128 steerable beams Not fully pipelined Non-real time operation Full bandwidth 	 Maybe 	
AA4	197	Band: 1 + 2 Band: 5	 Full Continuum and Spectral Line imaging pipelines 64k channels Zoom mode Full bandwidth 	 16 steerable beams With de-dispersion Full bandwidth 	Supported by PST	 1500 steerable beams Fully pipelined Real time operation Full bandwidth 	1	4 beams

Integration Test Facility (ITF)

- Convenient environment to
 - install products
 - integrate with other products
 - test product-to-product interfaces
 - troubleshoot issues, etc
- Line-up of products to (partially) qualify the system-level design
- Verify new releases of software/firmware (and hardware), before installing on-site
- Knowledge transfer between contractors, engineers, AIV Team, Science Commissioning Team, etc

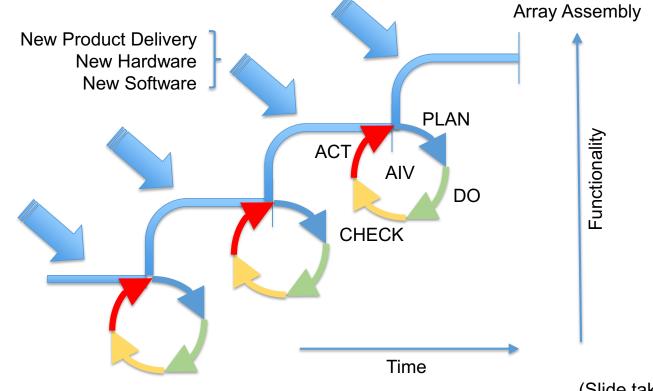

Rolling-Out Software

- Scaled Agile Framework (SAFe ®)
- An agile process that allows scalability of overall team size by having "teams of teams"
- 3-month "cadence" called Program Increment
- Release on demand, develop on cadence
- Continuously builds value and reduces risk
- Has an evolving architectural runway
- Working product demonstrated frequently
- Regular stakeholder engagement

SUARE KILONETRE ARRAY

Sequencing of Milestones and Dependencies

Verification Flow Diagram (*)


- Factory Acceptance Tests
- Delivery of hardware or software to site
- Site Acceptance Tests
- Major Verification Events
- Hand-over of responsibility from product contractor to SKAO

Useful to ensure that there are no gaps in the verification planning

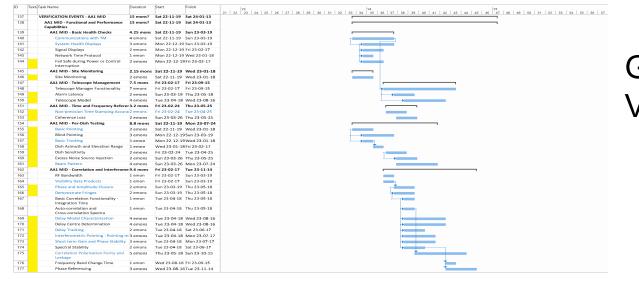
(*) Initiated by L. Stringhetti

Iterative and Continuous Process

(Slide taken from P. Hekman)

MeerKAT Precursor Integration

- Significant activity which carries schedule, technical and budgetary risks
- Requires careful roll-out planning
- Ensure that interfaces between MeerKAT components and SKA1-MID components are fully described



MeerKAT Precursor Telescope Dishes

Integration & Verification Plan

• Structured framework, in which all integration and verification activities will be carried out in a coordinated manner

Gantt Chart showing Verification Events

I&V Planning Level of Effort

Number of Engineering (Level-1) Requirements is about 650

		Integration	Verification	Test
		Events	Events	Procedures
	ITF	20	13	25
SKA1-	AA1	30	21	68
	AA2	35	27	86
MID	AA3		24	55
	AA4		22	28
	ITF	20	13	32
SKA1-	AA1	20	21	70
LOW	AA2	20	28	95
	AA3		27	105
	AA4		29	102

Exploring the Universe with the world's largest radio telescope

Configuration Management

- Critical to the I&V effort
- Hardware / Firmware / Software configuration status of the Telescope shall be recorded with test results documentation

Lessons Learned

- Roll-out activities and AIV work scope is often under-estimated, even at product level
- Separate R&D from construction
- The value of a qualified solution is immense (much more valuable than another unproven solution that looks good)
- Learn from prototypes
- Accurate and complete requirements (that are traceable to science goals) are very important, especially when placing contracts
- Properly qualify subsystems
- Integrate early!
- Get timely and effective support and maintenance

Conclusions

- Unprecedented scale
- Remote sites
- Global effort, etc
- It needs mature processes and thorough planning in order to succeed
 - Stakeholder management
 - Project management
 - Standardisation of tools
 - Issue tracking
 - Requirements management
 - Configuration management
 - Change management, etc
- Important to have a common Telescope roll-out vision across the project
- Keep looking at Lessons Learned

