SKA-VLBI capacity and technique

Cristina Garcia Miro / Tao An
JUMPING JIVE Project / SKA VLBI SW
miro@jive.eu JIVE / SHAO

SQUARE KILOMETRE ARRAY
Exploring the Universe with the world’s largest radio telescope
SKA-VLBI: broadest angular resolution

![Graph showing angular resolution at 1.5 GHz for various telescopes with SKA-VLBI.]

- In development
- Commissioning / Early science
- Operational

Physical scale at $z = 1$ (kpc)

Angular resolution at 1.5 GHz (arcsec)

Global VLBI
VLBA
LBA
EVN
eMERLIN-EVN
eMERLIN

VLA
A
B
C
D
ASKAP
MeerKAT

© Radcliffe2018
SKA-VLBI:
brodest angular resolution

Angular resolution at 1.5 GHz (arcsec)

Physical scale at $z = 1$ (kpc)

- In development
- Commissioning / Early science
- Operational

Global VLBI
VLBA
LBA
EVN
eMERLIN-EVN
eMERLIN

VLA
A
B
C
D

ASKAP
MeerKAT
SKA1-MID
SKA2-MID

+ Global VLBI
+ Global VLBI

© Radcliffe2018
SKA-VLBI: broadest angular resolution
SKA-VLBI

SKA provides …

• INDEPENDENT MULTI-BEAM CAPABILITY
• ACCESS to SOUTHERN SKIES and GALACTIC CENTER
• BOOST in SENSITIVITY to µJy regime
• SUPERIOR AMPLITUDE and POLARISATION CALIBRATION
SKA provides …

- INDEPENDENT MULTI-BEAM CAPABILITY
- ACCESS to SOUTHERN SKIES and GALACTIC CENTER
- BOOST in SENSITIVITY to µJy regime
- SUPERIOR AMPLITUDE and POLARISATION CALIBRATION

VLBI provides …

- IMAGES of SKY at BROAD RANGE of ANGULAR SCALES RESOLUTIONS
- HIGH RESOLUTION for SKA HPSOs
- INDEPENDENT COMMISIONING TOOL and EARLY PUBLIC RELATIONS OPPORTUNITIES
- AN ENTHUSIASTIC USER COMMUNITY
SKA-VLBI Science
SKA-VLBI Science

- JUMPING JIVE 2nd deliverable: Portfolio of Science Cases
- SKA VLBI Science Working group support
- Outcomes inform the SKA-VLBI operational model and KSPs
VLBI with SKA1-MID:

6 science cases updated (from SKA1 scientific use cases doc.)

SKA continuum surveys

- Adding high angular resolution to SKA surveys:
 - Giroletti et al.

Transients

- Resolving (ultra)-relativistic outflows with SKA-VLBI:
 - Paragi et al.

Our Galaxy, Astrometry and CoL

- Galactic structure using maser parallax measurements:
 - Ellingsen et al.

Pulsars, Astrometry

- Dynamics of the Galactic Bulge using OH masers:
 - Imai et al.

- Parallax measurements of SH pulsars:
 - Deller et al.
VLBI with SKA1-MID:

16 new science cases!

AGNs (6)
- Polarimetric survey of a big AGN sample: Agudo et al.
- Intermediate mass black holes: Mezcua et al.
- Chasing merged and merging SMBH: Anton et al.
- HI absorption in high-z radio AGN: Morganti et al.
- Extremely high-z AGNs: Perger et al.
- Strong gravitational lensing: McKean et al.

Transients (4)
- FRBs and their hosts: Paragi et al.
- ULXs in the local Universe: Middleton et al.
- Superflares on low-mass stars: Villadsen et al.
- Inhomogeneous SNe at low freqs: Chandra et al.

Astrometry (4)
- Continuum sources in star forming regions: Dzib et al.
- Ultra-precise astrometry to the MCs: Rioja et al.
- Gaia counterparts: Charlot et al.
- Radio and Gaia tie with radio stars: Zhang et al.

Stars, planets and ISM (2)
- Pulsar scintillometry with SKA1-MID: Kirsten et al.
- Radio emission from massive exoplanets: Gawronski et al.
VLBI with SKA1-LOW:
7 new science cases!

Galaxies and AGN
AGN physics at very low freqs: Morabito et al.
HI absorption at high z: Gupta et al.

Transients
Jets from low mass YSO at very low frequencies: Ainsworth et al.

Pulsars and ISM
Pulsar scintillometry at very low freqs: Kirsten et al.

Stars, Planets, Astrometry
Precise astrometry of low frequency pulsars: Dodson et al.
Precise astrometry for exoplanets detection: Guirado et al.
VLBI with SKA1-LOW and SKA1-MID: 1 new science case

Multi-view astrometry with SKA-VLBI: Rioja et al.

ΔΘ ~ few deg

ΔΘ_{eff} ~ 0

Target Source

Ionosphere

Ionosphere

~1000's km

Multi-Beam capability

Widely applicable

1 microarcsec relative astrometric precision!
VLBI with SKA:

key operational concepts

Multiple VLBI beams produced from a subarray of antennas/stations
typically the core
VLBI with SKA:

key operational concepts

Multiple VLBI beams produced from a subarray of antennas/stations
typically the core

Independent subarrays:
different purposes, up to 16
VLBI with SKA:
key operational concepts

Multiple VLBI beams produced from a subarray of antennas/stations
typically the core

Independent subarrays:
different purposes, up to 16

Simultaneous/commensal observing modes:
Imaging (continuum, spectral line and fast imaging for slow transients)
Non-Imaging (PSS, PST, transient buffer and VLBI)
VLBI with SKA:

key operational concepts

Multiple VLBI beams produced from a subarray of antennas/stations
typically the core

Independent subarrays:
different purposes, up to 16

Simultaneous/commensal observing modes:
Imaging (continuum, spectral line and fast imaging for slow transients)
Non-Imaging (PSS, PST, transient buffer and VLBI)

Independent multi-beam capability
within each subarray (in scan boundaries)
SKA1 VLBI technical implementation
SKA1 VLBI technical implementation

SKA-VLBI high angular resolution images
SKA1 VLBI technical implementation

SKA-VLBI high angular resolution images

SKA image cubes (continuum and spectral line, from same subarray)
SKA1 VLBI technical implementation

- **JUMPING JIVE 1st deliverable:** “Details on VLBI Interfaces to SKA Consortia”
- **Revision of Level 1 VLBI requirements** (CDR outcomes, CSP assumptions, VLBI SWG inputs).
SKA1 VLBI technical implementation

- **CPF facility**
 - CSP MID
 - ICD: SADT to CSP Mid SADT_CSP_005
 - 80x100GE shared lines for Visibilities, VLBI beams (VDIF packets), transient data, etc.

- **SPC facility**
 - SDP Ingress Ethernet switch
 - SaDT SPC Core routers
 - SPC External router
 - SKAO Requirements for SPC
 - External Correlator

VLBI Terminal
- VLBI Terminal
- VLBI server (LMC/Tango Framework)
- VLBI recorder jiveSab
- VLBI recorder jiveSab

- **ICD**
 - ICD: SADT to VLBISDP_VLB1.001
 - 4x100GE dedicated lines for VLBI beams
 - ICD: SADT to VLBISADT_VLB1.001
 - 2x10GE (or 100GE) dedicated lines for NSDN
 - SKAO Requirements for SPC

SKA-MID RSA Karoo site
- ICD: CSP Mid to VLBI CSP_VLB1.001
- ICD: TM to VLBI TM_VLB1.001

Exploring the Universe with the world’s largest radio telescope
SKA-VLBI with SKA1-MID
VLBI with SKA1-MID:
All observing modes simultaneously within a subarray with bandwidth sacrifice

Correlation:
- Normal visibilities, zoom (100-3 MHz, 6 kHz - 190 Hz)
- VLBI coarse visibilities: 200 kHz

Tied-array beams:
- 4 VLBI beams but up to 52 beams max per subarray (200 MHz b/w), from any subarray size
- Each VLBI beam: dual-pol real channels (1-128 & 200 MHz, 2-16 bits, Nyquist)
- RFI flagging/excision and polarisation correction
- 1500 for Pulsar Search PSS
- 16 for Pulsar Timing PST

SKA1-MID Antenna
Antenna Beam

Subarray #1
Subarray #2

Exploring the Universe with the world’s largest radio telescope
VLBI with SKA1-MID: configurations

VLBI beams FoV:
4km: 25.5-0.6"
20km: 5-0.12"
full: 1.3-0.03"

Remote telescope 100m class
best: 10th Tgal, PWV=5mm
60sec integration, 1 sigma

Full array (100%)
VLBI with SKA1-MID: configurations

VLBI beams FoV:
- 4km: 25.5-0.6"
- 20km: 5-0.12"
- full: 1.3-0.03"

SEFD - SKA1-MID subarray radius (best vs. worst conditions)
- best: 10th Tgal, PWV=5mm
- worst: 90th Tgal, PWV=20mm

SKA1-MID VLBI baseline sensitivity
- Subarray radius and b/w
- Sensitivity subarray radius 4Km, 256 MHz b/w
- Sensitivity subarray radius 4Km, 1024 MHz b/w
- Sensitivity subarray radius 4Km, 2048 MHz b/w
- Sensitivity full array, 2048 MHz b/w

Remote telescope 100m class
- best: 10th Tgal, PWV=5mm
- 60 sec integration, 1 sigma

tens of μJy!!
Simultaneous Observing with **SKA1-MID**: limited by processing resources (26+1 FSP=Frequency Slice Processor)

<table>
<thead>
<tr>
<th>Band</th>
<th>VLBI + coarse Vis</th>
<th>Imaging</th>
<th>PSS</th>
<th>PST</th>
<th>Zoom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1 (0.35-1.05GHz)</td>
<td>4 beams full (700MHz) (8 FSP)</td>
<td>Full (4 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b full (4 FSP)</td>
<td>2 (2 FSP)</td>
</tr>
<tr>
<td></td>
<td>4b 600MHz (6 FSP)</td>
<td>Full (4 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b full (4 FSP)</td>
<td>4 (4 FSP)</td>
</tr>
<tr>
<td>Band 2 (0.95-1.76GHz)</td>
<td>4 beams full (810MHz) (10 FSP)</td>
<td>Full (5 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b 600 MHz (3 FSP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4b 600MHz (6 FSP)</td>
<td>Full (5 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b full (5 FSP)</td>
<td>2 (2 FSP)</td>
</tr>
<tr>
<td>Band 5a/b (4.6-8.5GHz & 8.3-15.3GHz)</td>
<td>2 beams 5GHz (26 FSP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 beams 2.5GHz (26 FSP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 beams 600MHz (6 FSP)</td>
<td>512MHz (3 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b 512 MHz (3 FSP)</td>
<td>6 (6 FSP)</td>
</tr>
</tbody>
</table>
Simultaneous Observing with
SKA1-MID: limited by processing resources
(26+1 FSP=Frequency Slice Processor)

<table>
<thead>
<tr>
<th>Band</th>
<th>VLBI + coarse Vis</th>
<th>Imaging</th>
<th>PSS</th>
<th>PST</th>
<th>Zoom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.35-1.05GHz)</td>
<td>4 beams full (700MHz) (8 FSP)</td>
<td>Full (4 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b full (4 FSP)</td>
<td>2 (2 FSP)</td>
</tr>
<tr>
<td></td>
<td>4b 600MHz (6 FSP)</td>
<td>Full (4 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b full (4 FSP)</td>
<td>4 (4 FSP)</td>
</tr>
<tr>
<td>Band 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.95-1.76GHz)</td>
<td>4 beams full (810MHz) (10 FSP)</td>
<td>Full (5 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b 600 MHz (3 FSP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4b 600MHz (6 FSP)</td>
<td>Full (5 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b full (5 FSP)</td>
<td>2 (2 FSP)</td>
</tr>
<tr>
<td>Band 5a/b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.6-8.5GHz & 8.3-15.3GHz)</td>
<td>2 beams 5GHz (26 FSP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 beams 2.5GHz (26 FSP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 beams 600MHz (6 FSP)</td>
<td>512MHz (3 FSP)</td>
<td>1500b 300MHz (8 FSP)</td>
<td>16b 512 MHz (3 FSP)</td>
<td>6 (6 FSP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full (26 FSP)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKA-VLBI with SKA1-LOW
VLBI with SKA1-LOW: 50-350 MHz

All observing modes simultaneously:
for each subarray, for each station beam

SKA1-LOW Antenna/Receptor
Antenna Beam

SKA1-LOW “Station”
Station Beam 300 MHz b/w

SKA1-LOW “subarray”
Correlation: normal and zoom (14.4 kHz - 5.4kHz - 226 Hz)

- Tied-array beams from 20 Km diameter subarray:
 - 4 **VLBI beams** (in total)
 - 500 for **Pulsar Search PSS**
 - 16 for **Pulsar Timing PST**
VLBI with SKA1-LOW: configurations

VLBI beams FoV:
4km: 178-25.5"
10km: 71-10"

Remote telescope 100m class
60sec integration, 1 sigma

SKA1-LOW VLBI baseline sensitivity
Subarray radius and b/w

SEFD - SKA1-LOW subarray radius
VLBI with SKA1-LOW: configurations

VLBI beams FoV:
4km: 178-25.5”
10km: 71-10”

Remote telescope 100m class
60sec integration, 1 sigma

hundreds of µJy!!
65 scientists from 18 countries

Workshops sessions: AGN, transients, pulsars and FRBs, high precision stellar astrometry and prospects for SKA-VLBI including African telescopes

SKA-VLBI data challenges

Four working groups to discuss SKA-VLBI Key Science Projects

“Women in action” from the astrometry working group
SKA-VLBI Conclusions
SKA-VLBI Conclusions

- VLBI is an observing mode of the SKA Observatory
- CSP design compatible with VLBI standards & networks
- SKA-VLBI System level solution ready, it can be applied to SKA precursors
- The SKA-VLBI community supports enthusiastically
- Let’s start cutting-edge VLBI science with SKA precursors: MeerKAT-VLBI, (MK+)-VLBI, ASKAP-VLBI…
VLBI with SKA: Global VLBI network
Table 2: Common visible time in hours for the SKA sites with other array elements

South African SKA

<table>
<thead>
<tr>
<th>Dec</th>
<th>W. Aus</th>
<th>JP</th>
<th>CN</th>
<th>NZ</th>
<th>CL</th>
<th>USA-HI</th>
<th>USA-NM</th>
<th>USA-PR</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>+45°</td>
<td>0.0</td>
<td>2.2</td>
<td>5.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>3.6</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>+30°</td>
<td>0.0</td>
<td>2.7</td>
<td>7.6</td>
<td>0.0</td>
<td>0.4</td>
<td>1.8</td>
<td>4.4</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>+15°</td>
<td>0.0</td>
<td>2.7</td>
<td>7.3</td>
<td>0.0</td>
<td>2.3</td>
<td>1.8</td>
<td>4.8</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>0.8</td>
<td>2.5</td>
<td>6.8</td>
<td>0.6</td>
<td>3.7</td>
<td>1.7</td>
<td>5.0</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>-15°</td>
<td>2.0</td>
<td>2.1</td>
<td>6.3</td>
<td>1.9</td>
<td>4.9</td>
<td>1.4</td>
<td>5.1</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>-30°</td>
<td>3.0</td>
<td>1.2</td>
<td>5.4</td>
<td>3.1</td>
<td>6.2</td>
<td>0.0</td>
<td>5.2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>-45°</td>
<td>4.0</td>
<td>0.0</td>
<td>5.2</td>
<td>7.9</td>
<td>0.0</td>
<td>0.0</td>
<td>5.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-60°</td>
<td>5.5</td>
<td>0.0</td>
<td>11.8</td>
<td>11.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-75°</td>
<td>12.9</td>
<td>0.0</td>
<td>24.0</td>
<td>24.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-90°</td>
<td>24.0</td>
<td>0.0</td>
<td>24.0</td>
<td>24.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Western Australian SKA

<table>
<thead>
<tr>
<th>Dec</th>
<th>ZA</th>
<th>JP</th>
<th>CN</th>
<th>NZ</th>
<th>CL</th>
<th>USA-HI</th>
<th>USA-NM</th>
<th>USA-PR</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>+45°</td>
<td>0.0</td>
<td>5.3</td>
<td>5.3</td>
<td>0.0</td>
<td>4.0</td>
<td>1.3</td>
<td>0.0</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>+30°</td>
<td>2.0</td>
<td>7.0</td>
<td>7.0</td>
<td>3.2</td>
<td>4.0</td>
<td>1.7</td>
<td>0.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>+15°</td>
<td>3.5</td>
<td>8.0</td>
<td>9.2</td>
<td>5.2</td>
<td>0.0</td>
<td>5.1</td>
<td>1.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>4.5</td>
<td>8.0</td>
<td>6.6</td>
<td>6.0</td>
<td>0.0</td>
<td>5.3</td>
<td>1.6</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>-15°</td>
<td>5.5</td>
<td>7.8</td>
<td>8.3</td>
<td>7.8</td>
<td>0.4</td>
<td>5.4</td>
<td>1.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>-30°</td>
<td>9.0</td>
<td>5.1</td>
<td>6.2</td>
<td>9.1</td>
<td>1.9</td>
<td>5.5</td>
<td>0.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>-45°</td>
<td>7.7</td>
<td>0.0</td>
<td>10.8</td>
<td>5.2</td>
<td>5.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-60°</td>
<td>11.5</td>
<td>0.0</td>
<td>14.1</td>
<td>11.7</td>
<td>5.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-75°</td>
<td>24.0</td>
<td>0.0</td>
<td>24.0</td>
<td>24.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-90°</td>
<td>24.0</td>
<td>0.0</td>
<td>24.0</td>
<td>24.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Key: W. Aus: Western Australia; ZA: South Africa; JP: Japan; CN: Eastern China; NZ: New Zealand; CL: Chile (latitude of former TIGO site); USA-HI: Hawaii; USA-NM: New Mexico; USA-PR: Puerto Rico; Europe: Id.

uGMRT (130MHz-1500MHz)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>uGMRT</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
</tr>
<tr>
<td>7.0</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>7.0</td>
</tr>
<tr>
<td>6.5</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

SKA1-MID

SKA1-LOW