

S. Riggi (\*)
INAF OACT



(\*) + **C.Trigilio** (PI ESP10),G.Umana, A.Ingallinera, F.Cavallaro, F.Bufano, S.Loru, P.Leto, C.Buemi, F.Schillirò

## Outline

### ■ Goals of the SCORPIO Early Science Project

#### Observations of the SCORPIO field

- Summary and status of the data reduction
- Processing issues
- Maps obtained

#### Source extraction

- Methodology
- Performance validation

#### **■** Source catalog analysis

- Source counts
- Spectral indices
- Extended/resolved source fraction

### Comparison with other catalogues

- Validation studies by cross-match with MGPS-II
- Search for galactic object associations in astronomical databases

#### Summary

- Ongoing analysis
- Paper organization

# The SCORPIO Early Science Project

## PI: C. Trigilio (INAF-OACT)

First blind survey of the Galactic plane at this frequency with a planned sensitivity of 30 µJy/beam.

### Scientific goals:

- unbiased search for radio stellar emission
- insights on the physics of particular classes of stellar systems
- search for coherent radio emission from stellar systems
- study the occurrence of different Galactic objects (e.g. PNs, HIIs, SNR)
- provide us with a clear forecast on the potential of SKA and its precursors in the field of Galactic radio astronomy

#### **Technical goals:**

- Test of ASKAP pipeline on the Galactic plane (extended objects, diffuse emission, ...)
- Development of imaging and analysis techniques suited for the Galactic plane

## Observations of the SCORPIO field

Available observations of the SCORPIO field. Using #1 and #3 for this analysis. ISSUE: Data reduction of observations #4, #5, #6 was not completed by processing staff --> see Umana's talk

| ID | Telescope | Freq.<br>(MHz) | Config.                | #Ant. | Area<br>(deg²) | RMS<br>(μJy/b) | Obs.<br>Date | Data<br>reduction<br>Status | Refs.                      |
|----|-----------|----------------|------------------------|-------|----------------|----------------|--------------|-----------------------------|----------------------------|
| 1  | ATCA      | 2100           | 6A<br>6B               | 6     | 8.4            | 30/<br>40      | 2011<br>2012 | Completed                   | Umana+15<br>Cavallaro+18   |
| 2  | ATCA      | 2100           | EW367<br>EW352<br>H214 | 6     | 6.7            | 100            | 2014<br>2016 | Completed                   | Riggi+16<br>Ingallinera+19 |
| 3  | ASKAP     | 912            | closepack36            | 15    | 40             | 300/<br>500    | 2018         | Completed                   |                            |
| 4  | ASKAP     | 920            | closepack36            | 36    | 40             | ?              | 2019         | Not<br>completed            |                            |
| 5  | ASKAP     | 1296           | closepack36            | 36    | 40             | ?              | 2019         | Not<br>completed            |                            |
| 6  | ASKAP     | 1630           | closepack36            | 36    | 40             | ?              | 2019         | Not<br>completed            | 4                          |

## SCORPIO data reduction & issues

### Tweaking ASKAPsoft pipeline for Galactic data...







## Compact source extraction

### Sources extracted from both maps with CAESAR source finder

Main finder parameters

| Par. Type  | Parameter        | CAESAR                  |  |  |
|------------|------------------|-------------------------|--|--|
|            | $\sigma_{seed}$  | 5*                      |  |  |
| Detection  | $\sigma_{merge}$ | 2.5<br>5                |  |  |
|            | $n_{pix}$        | 3                       |  |  |
|            | method           | local                   |  |  |
|            | bkg              | median                  |  |  |
| Bkg/Noise  | rms              | mad                     |  |  |
|            | box size         | 10×beam                 |  |  |
|            | grid step        | 20%box                  |  |  |
|            |                  | peak search+            |  |  |
| Deblending | method           | blob detection †        |  |  |
| Fitting    | method           | N-gaus fit <sup>‡</sup> |  |  |

#### **Pre-selection cuts**

| CAESAR    |                                                                   |
|-----------|-------------------------------------------------------------------|
| Fit conv  | erged, $\tilde{\chi}^2$ < 10                                      |
| Compon    | nent peak flux positive                                           |
| source is | nent centroid inside the<br>sland and inside a<br>boundary region |
|           | on between any pair of<br>omponents larger than                   |



#### **ASKAP** catalogue

| # components | Selection |      |             |  |  |
|--------------|-----------|------|-------------|--|--|
| politica     | NO SEL    | SEL  | SEL+VIS SEL |  |  |
| 0            | 250       | 0    | 0           |  |  |
| 1            | 4754      | 3857 | 3812        |  |  |
| 2            | 440       | 308  | 195         |  |  |
| 3            | 131       | 59   | 6           |  |  |
| >3           | 88        | 38   | 0           |  |  |
| All          | 5663      | 4262 | 4013        |  |  |

#### ATCA catalogue

| # components | Selection |      |             |  |
|--------------|-----------|------|-------------|--|
| components   | NO SEL    | SEL  | SEL+VIS SEL |  |
| 0            | 146       | 0    | 0           |  |
| 1            | 3021      | 2104 | 2096        |  |
| 2            | 465       | 188  | 120         |  |
| 3            | 158       | 53   | 11          |  |
| >3           | 102       | 30   | 0           |  |
| All          | 3892      | 2375 | 2227        |  |

Visual inspection to reject spurious and artefacts.

Need automation + improved quality cuts/classification algorithm

# Catalog completeness & reliability

### Evaluated with simulations for 3 different finders (Caesar, Selavy, Aegean)

- $\geq$  20 mosaics drawn from the data with real compact source subtracted (down to 2 $\sigma$ ) and artificial point sources added (similar source density, flux distribution of the real data)
- Used default parameters for all finders
- PyBDSF tried also but hanging on extended source fitting (at least with default parameters)



- Completeness >90% above 5 mJy
- Low reliability (>20%) for all finders --> Welcome to the Galactic Plane!
- Difference among finders due to different detection thresholds and quality cuts
  - Deliberately used a lower detection threshold in Caesar to create a training sample with more visually identified spurious sources.
  - Selavy pre-defined cuts are more stringent than in Caesar, Aegean does not report quality cuts.
     Caesar/Selavy comparable when using the same cuts
- Aegean wrt Selavy are quite comparable overall
- Caesar outperforming when using predefined cuts + a neural network classifier to identify good/bad source components

# Source position accuracy

Accuracy evaluated on the same set of sources (e.g. detected by all finders) due to the different completeness



- No significant biases found in all finders
- Position resolution comparable in all finders (slightly worse in RA for Caesar)

# Source flux density accuracy



Accuracy evaluated on the same set of sources (e.g. detected by all finders) due to the different completeness

- Biased measurement in the low S/N
  - <5% at the detection threshold, >20% below
  - Common issue in many other finders
  - Slightly better in Selavy
- Comparable flux density resolution for Caesar and Aegean
  - ~10% at the detection threshold, larger for Selavy
- Bias and resolution were parameterized in Caesar vs IgS for source counts correction (see next slides)

## Source counts

### Source counts derived from ASKAP source catalog





- Source counts corrected for measurement effects (completeness, flux bias/resolution)
   using a forward-folding technique
  - Model true source counts (e.g. with a power-law)
  - Fit model (folded with a response matrix) to data with maximum log-likelihood method --> correction parameters
- Differential counts found in agreement with literature data at 1.4 GHz

# Spectral indices

Average spectral indices can be obtained for a portion of ASKAP map by cross-match with ATCA catalogue

- 716 ASKAP source components matched to ATCA (out of 856 inside ATCA region)
  - #659 one-to-one matches
  - #57 one-to-many matches (NB: ATCA map has ~10"x6" resolution wrt to ASKAP 24"x20")
  - ~3.8 matches found by chance in randomized catalogues



## Resolved source fraction



- Resolved source if S/Speak>thr, thr= a + b/SN (e.g. a=1.08, b=2.03 in XLL survey)
- Computed the fraction of resolved sources as a function of a
  - ➤ ~30% resolved sources extended in the catalogue from S/Speak criterion
  - ~8% of truly resolved sources obtained from ATCA cross-matches, ~80% identified with S/Speak criterion

# Comparison with MGPS catalogue



- 765 source matches with MGPS-II catalog (out of 799 MGPS sources present in ASKAP map)
- 594 matches left after removal of multi-match and visual inspection (unreliable MGPS fluxes, etc)
- No significant flux density scale issues
   (i.e. data are strongly correlated)
- Fitted slope (1.040±0.003) indicating an excess in ASKAP fluxes compared to MGPS --> potential flux scale offset at the level of 9-10% to be investigated with full array data

## Cross-matches with astronomical catalogues

- ~150 known Galactic compact objects (stars, HII, pulsars, PNe) associated to ASKAP sources
- Extended objects not analyzed in this work --> see S.Loru's talk for SNR in SCORPIO
- ~96% ASKAP sources not classified yet



## Stars in SCORPIO

- 20 stars (7 candidates, 13 confirmed) associated to ASKAP sources out of 10628 SIMBAD entries --> sample including 7 YSO (6 candidates, 1 confirmed)
- Spectral index measurement for 6 sources (4 YSO, 2 STARS)



- First spectral index measurement provided
- Infrared emission (co-spatial with the radio) observed at 12 & 22 um

Red: radio ASKAP 912 MHz Green: IR WISE 12 um Blue: IR WISE 22 um

## Pulsars in SCORPIO

PWN (still debated in the literature)

- 21 pulsars (all confirmed objects) associated to ASKAP sources out of 58 ATNF entries
- Spectral index measurement for 4 sources (1 resolved in ASKAP)



## PNe in SCORPIO

radiation ==> need more analysis

- 32 PNe (27 confirmed, 5 candidates) associated to ASKAP sources out of 45 HASH entries
- Spectral index measurement for 3 sources (1 confirmed, 2 candidates)



# HII regions in SCORPIO

- 83 HII (46 confirmed, 37 candidates) associated to ASKAP sources out of 356 WISE entries
- 10 detected in both ASKAP and ATCA, 8 (4 candidates) with spectral index measurement



## Results & lessons learnt from SCORPIO ESP

## Scientific results (even with an incomplete array!)

- 4220 sources catalogued at 912 MHz with fluxes ranging from 3.9 Jy down to 0.4 mJy
  - ✓ ~87% of the sources detected with significance higher than 5 sigmas
  - √ >90% completeness above 5 mJy
  - ✓ >8% resolved sources
  - √ ~4% associated to catalogue objects, ~96% still unclassified
- Differential source counts in agreement with existing data at 1.4 GHz
- Spectral index measurement provided for ~17% of the source sample
- New spectral index measurements for some known and candidate objects present in SCORPIO (stars, pulsars, PNe)

#### **Technical results**

- Optimization of pipeline parameters for Galactic fields
- Improvements and testing of CAESAR source finder performances for both compact and extended sources (e.g. S. Riggi et al, PASA 2019)
- Comparable source finding performances found from different tools
- Development of post-processing algorithms for value-added catalogue (spectral indices, cross-matches, classification, etc) under way

# Ongoing and future analysis

### **Ongoing activities**

- Complete census of SCORPIO sources using additional catalogues
- Study of classification parameters on pre-classified sources
- Unsupervised classification of the full source sample

#### **Future activities**

- Exploitation of new ASKAP SCORPIO data (B1, B2, B3) with full array
- Benefits expected
  - ✓ An increase in catalogue size, due to the lower detection threshold reached, and a better source flux density characterization (bias and resolution) for the already catalogued sources
  - ✓ A more accurate and automated identification of extended and spurious sources for the entire field, by cross-matching results found at different frequencies
  - ✓ A more robust source counts estimate around and below 1 mJy
  - ✓ A first and more robust spectral index measurement for sources currently lacking a spectral information, e.g. sources located outside the Scorpio ATCA region and near the detection threshold

## Paper on SCORPIO Compact Sources

## ■ New paper announced recently on EMU/ASKAP mailing list

## **■** What is expected to be included in the paper?

- ✓ Brief description of the data reduction (described more in detail in Umana's paper in preparation)
- ✓ Source extraction methodology and performances
- ✓ Cross-checks and analysis with the extracted catalogues (e.g. source counts, spectral index, etc)
- ✓ Census of SCORPIO compact sources by cross-match with astronomical catalogues and first measurements for selected sources

### What is expected to be left for future papers?

- ✓ Inclusion of B1, B2, B3 ASKAP SCORPIO data with 36 antennas (long times expected for data reduction so left for a second release of the catalogue)
- ✓ Classification studies on the catalogued source sample (still working on this)
- ✓ Deep studies on selected/interesting sources (interested people are welcome)
- ✓ Study of existing and new supernova remnants (keep in touch with Milena, Sara, and Adriano)