Planning for Science with the SKA

Tyler Bourke SKA Project Scientist

SKA Swiss Days, USI Lugano October 2022

SKA– Key Science Drivers The history of the Universe

Testing General Relativity (Extreme Gravity, Gravitational Waves)

> Cradle of Life (Planets, Molecules, SETI)

Cosmic Dawn & Reionisation (First Stars and Galaxies)

> Galaxy Evolution (Normal Galaxies z~2-3)

Cosmic Magnetism (Origin, Evolution)

Cosmology (Dark Matter, Large Scale Structure)

Our Galaxy (Star Birth & Death, Matter Evolution, Structure)

Exploration of the Unknown

Huge range of transformational science enabled by the SKA

SKA Big Questions

> The Cradle of Life & Astrobiology

How do planets form? Are we alone?

- Strong-field Tests of Gravity with Pulsars and Black Holes Was Einstein right with General Relativity?
- > Our Galaxy, The Milky Way

How does matter cycle between stars and the Interstellar Medium?

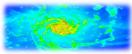
> The Origin and Evolution of Cosmic Magnetism

What is the role of magnetism in galaxy evolution and the structure of the cosmic web?

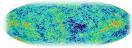
- Galaxy Evolution probed by Neutral Hydrogen and Radio Continuum How do normal galaxies form and grow? What is their star-formation history?
- > The Transient Radio Sky

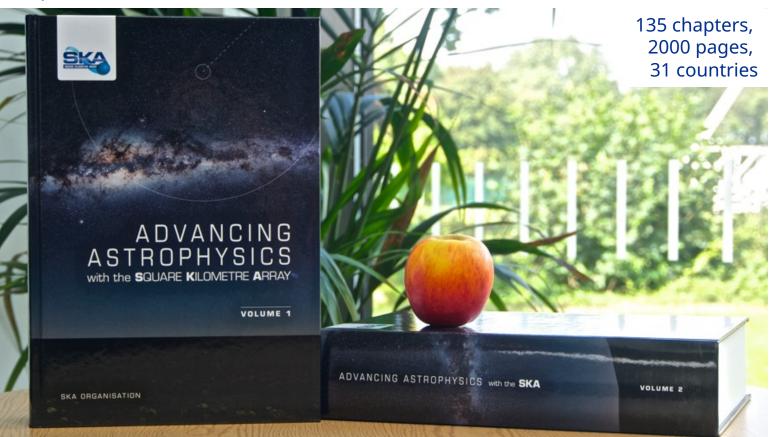
What are Fast Radio Bursts and how can we utilise them? What haven't we discovered?

> Cosmology & Dark Energy


What is dark matter? What is the large-scale structure of the Universe?

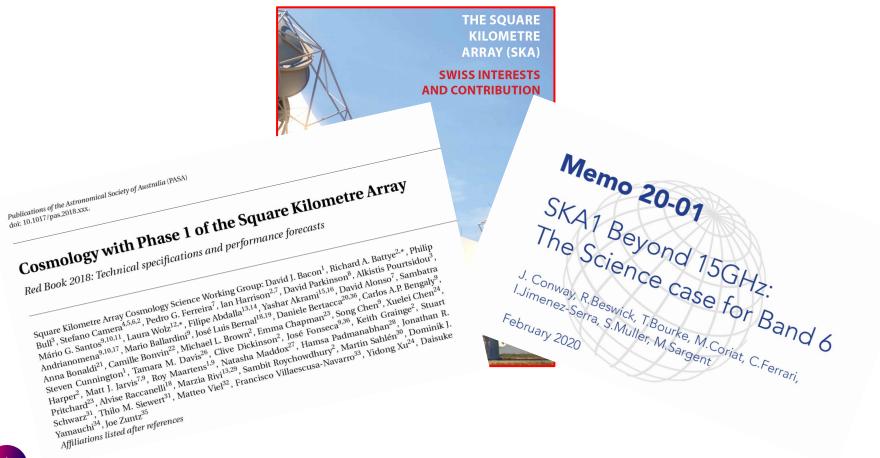
Cosmic Dawn and the Epoch of Reionization How and when did the first stars and galaxies form?





SKA Science Case

(2015 snapshot ; continuous evolution)


https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=215

SKA Science Case – White Books, Red Books, Memos

SKA Science Case – White Books, Red Books, Memos

The Road to Science

Science Commissioning

Science Verification

Shared Risk PI Normal PI KSP

Event	SKA-Low	SKA-Mid
Start of construction (T0)	V 1ST JULY 2021	1ST JULY 2021
Earliest start of major contracts (C0)	AUGUST 2021	AUGUST 2021
Array Assembly 0.5 finish (AA0.5) SKA-Low = 6-station array SKA-Mid = 4-dish array	FEBRUARY 2024	MARCH 2024
Array Assembly 1 finish (AA1) SKA-Low = 18-station array SKA-Mid = 8-dish array	FEBRUARY 2025	FEBRUARY 2025
Array Assembly 2 finish (AA2) SKA-Low = 64-station array SKA-Mid = 64-dish array, baselines mostly <20km	FEBRUARY 2026	DECEMBER 2025
Array Assembly 3 finish (AA3) SKA-Low = 256-station array, including long baselines SKA-Mid = 133-dish array, including long baselines	JANUARY 2027	SEPTEMBER 2026
Array Assembly 4 finish (AA4) SKA-Low = full Low array SKA-Mid = full Mid array, including MeerKAT dishes	NOVEMBER 2027	JUNE 2027
Operations Readiness Review (ORR)	JANUARY 2028	DECEMBER 2027
End of construction	JULY 2029	JULY 2029

Definitions

Science Commissioning (SC)	Execution & analysis of science observations, with the aim of testing and debugging the system
Science Verification (SV)	 Activities to verify the telescope system against the science requirements (to ensure the system meets the needs of the science users). Verifies one or more observing modes (e.g. deep imaging in B1) SV data will be publicly released Community may be involved in project/target selection
Shared Risk PI Projects	PI projects that carry a risk of not being successful or not being scheduled. No guarantee of re-observing or re-scheduling. Will be used to exercise end-to-end operations (e.g. new modes; KSP preparation)
Principal Investigator Projects	Science Projects of modest time requests that can typically be completed within a single time allocation cycle using already commissioned modes
Key Science Projects (KSPs)	KSPs are observing projects that require the allocation of significant observing time and resources (ie compute) over a period longer than one time allocation cycle. It is anticipated that KSPs will take up 50-70% of available time during the first 5 years of full operations.

The Telescopes – Phase 1

SKA1-Low: 131,072 low-freq antennas (512 stations each with 256 dipoles) 50 – 350 MHz 65 km baselines (11" @ 110 MHz) Murchison, Western Australia SKA1-Mid: 197 dishes (133 x 15m + 64 x 13.5m dishes) 0.35 – 15.4 GHz MeerKAT 150 km baselines (0.22" @ 1.7 GHz; 34 mas @ 15 GHz) Karoo, South Africa

Phase 2 (aspiration): > 2000 dishes across Africa; > 500,000 dipoles across Australia

First and Future (?) Generation Feeds/Receivers

Band	Frequency Range	Bandwidth	
Low	50 – 350 MHz	2 x 150 MHz	
Mid Band 1	0.35 – 1.05 GHz	700 MHz	
Mid Band 2	0.95 – 1.76 GHz	810 MHz	
Mid Band 3	1.65 – 3.05 GHz	1.4 GHz	
Mid Band 4	2.80 – 5.18 GHz	2.4 GHz	
Mid Band 5a	4.6 – 8.5 GHz	3.9 GHz	
Mid Band 5b	8.3 – 15.3 GHz	2 x 2.5 GHz	

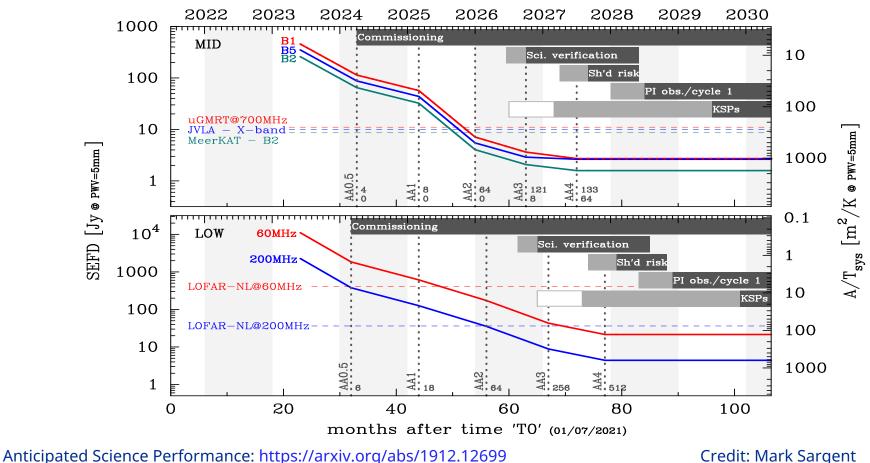
65k channels maximum across any band, zoom windows possible with 16k channels

Future upgrades? (Observatory Development Programme)			
Mid Band "A"	1.6 – 5.2 GHz	2 x 2 GHz	Bands 3+4
Mid Band "B"	4.6 – 24 GHz	(2 x 2.5 GHz)	Bands 5+6
Mid Band 6	15 – (28) GHz	(2 x 2.5 GHz)	Band 7 27-50 GHz?

Capabilities & Performance Estimates

Nominal frequency	110 MHz	300 MHz	770 MHz	1.4 GHz	6.7 GHz	12.5 GHz
Range [GHz]	0.05-0.35	0.05-0.35	0.35-1.05	0.95-1.76	4.6-8.5	8.3-15.4
Telescope	Low	Low	Mid	Mid	Mid	Mid
FoV [arcmin]	327	120	109	60	12.5	6.7
Max. Resolution [arcsec]	11	4	9.5	0.3	0.06	0.03
Max. Bandwidth [MHz]	300	300	700	810	3900	2 x 2500
Cont. rms, 1hr [µJy/beam] ª	26	14	4.4	2	1.3	1.2
Line rms, 1hr [µJy/beam] ^b	1850	800	300	140	90	85
Resolution range for Cont. & Line rms. [arcsec] ^c	12-600	6-300	1-145	0.6-78	0.13-17	0.07-9
Channel width [kHz]	5.4	5.4	13.4	13.4	80.6	80.6
Spectral zoom windows x narrowest bandwidth [MHz]	4 x 3.9	4 x 3.9	4 x 3.1	4 x 3.1	4 x 3.1	4 x 3.1
Finest zoom channel width [Hz]	226	226	210	210	210	210

One hour integrations Table Notes:


(a) Line sensitivity assumes fractional bandwidth per channel of $\Delta v/v = 10^{-4}$ (>10⁻⁶ will be possible)

(b) Continuum sensitivity assumes fractional bandwidth per channel of $\Delta v/v = 0.3$

(c) The sensitivity numbers apply to the range of beam sizes given by Min. and Max. beam sizes

Anticipated Science Performance: https://arxiv.org/abs/1912.12699

The Evolution of Performance

 \mathbf{k}

Telescope Access

Key Science Projects (KSPs)

- Large programs (>500 h ?) performed over multiple cycles (nominally 1 year)
- PI & leadership team from SKA-member countries; co-Is from any country (latter may be limited)
- Expected to provide added-value data products and tools back to SKAO
- Regular reviews to track progress toward goals

Principal Investigator (PI) Projects

• Small programs (<500 h ?) performed within a single cycle

Director-General's Discretionary Time

• Time allocated by the D-G outside of the normal TAC process

Major 2026-29 2024 2026 2028 2029 2021 Key Science dates Start of Start of Commencemen Commenceme Start of Project (KSP science science of PI-led of KSPs construction planning & commissionina verification programmes proposals

KSPs (~50-70%)

PI-led

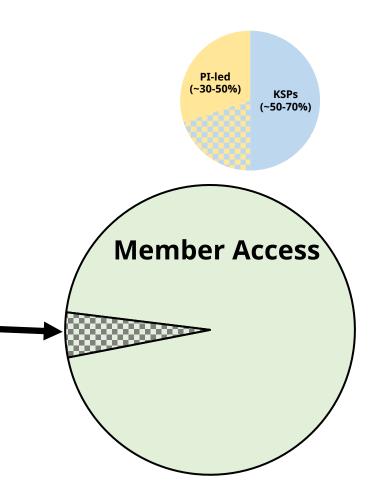
(~30-50%)

Telescope Access

Commensal Science

- Different observing projects utilizing the same telescope time (pointing direction); may use same or different observing mode (i.e., continuum imaging, spectral line imaging, pulsar/transient search)
- Maximizes the use of SKA resources
- Commensal science is not "free", will be counted against member share

Members (and Associate Members)

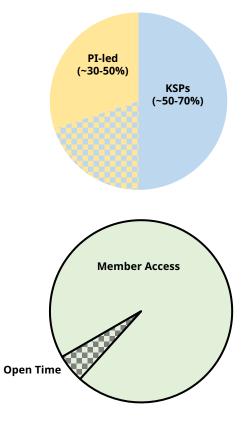

- Can lead any program (KSP, PI)
- Can be part of KSP leadership teams
- Access in proportion to member share

Non-Members

- Can lead PI programs
- Can be team members of KSPs, but not part of leadership team

Open Time

- Access capped at 5% ("Open Time"; TBC by Council)
- Access to any individual non-member entity may be capped



Telescope Access

NO time has been allocated for ANY project SWGs are NOT proto-KSPs High Priority Science Objectives are NOT KSPs There are NO guaranteed KSPs Time allocation will be based on SCIENTIFIC MERIT

and technical feasibility through a common proposal review process

Science Community Engagement

Regular Science Meetings

- Refresh of the science case
- New science from Precursors and Pathfinders
- Bring early career researchers into the family
- Keep everyone exited for SKA science

Science Working Group Activities

- Internal Data Challenges
- KSP planning (Obs. using precursors, etc)
- Webinars, SWG meetings, Updated science cases
- Monthly SWG Chairs updates, circulated to all SWGs

Science Data Challenges

- Allow science community to become familiar with SKAlike data products (synthetic, precursors)
- Test their analysis/extraction techniques against truth sets
- See talk by Philippa Hartley
- for SKA Regional Centres see talk by Rosie Bolton

KSP Planning

- Will run a planning workshop and issue a call for Letters of Intent (preliminary co-ordination), starting
 > 2 years before first KSP observations
- Workshop provides a forum for co-ordination and perhaps collaboration of proposals with similar science goals and technical needs

Science Verification

- Similar to ALMA SV
- Data to community early (AA2) public data
- Community involvement in source selection (like ALMA)
- Prepare for Shared Risk (cycle 0)
- Confidence that Level 0 Science Requirements will be met

We recognise and acknowledge the Indigenous peoples and cultures that have traditionally lived on the lands on which our facilities are located. www.skao.int