Intensity Mapping Systematics for HIRAX

HI Intensity Mapping

- Hyperfine Hydrogen transition line at 1420.4 MHz
- Efficiently and tomographically map cosmological volumes
 - Generally low angular resolution but redshift information cheap
 - Probe epoch of reionisation at low frequencies and large scale structure at high frequencies.

Post-reionisation IM

- v > 200-300MHz
- Biased tracer of large scale structure
- Cosmological constraints from HI power spectrum
- $\circ \quad \text{Large volumes achievable} \\$

Credit: Wikimedia Commons

HIRAX Overview

- Hydrogen Intensity and Real-time Analysis eXperiment
- Radio inteferometer with a compact, redundant layout
- Funded up to 256 element deployment.
- 6m diameter dishes instrumented to operate between 400–800 MHz. Plans to extend to 1024.
- To be co-located with the SKA in the Karoo (Low RFI, Southern Surveys)
- Will survey $\sim \frac{1}{3}$ of the sky over 4 years
- Primary Goals:
 - Observationally probe the evolution of dark energy
 - Survey the transient radio sky

Recent overview of HIRAX-256 Crichton et al. <u>https://arxiv.org/abs/2109.13755</u>

Science Goals - BAO Cosmology

Parameter	Value	
Number of dishes	256	
Dish diameter	6 m	
Dish focal ratio	0.23	
Collecting area	7200 m^2	
Frequency range	400–800 MHz	
Frequency resolution	1024 channels, 390 kHz	
Field of view	$5^{\circ}-10^{\circ}$	
Resolution	$0.2^{\circ}-0.4^{\circ}$	
Target system temperature	50 K	

- Survey has statistical power to significantly constrain parameters, even at 256 element stage .
- Requires careful control of systematics
- More detailed, beyond Fisher, forecasting analysis in preparation (Viraj Nistane)

HI Power Spectrum

- Primordial non-gaussianity
- Modified gravity theories

- Growth of structure
- Geometric Constraints
- Expansion rate
- Dark energy

- Non-linear dynamics
- HI content of galaxies

HIRAX-256 Correlator

HIRAX-256 correlator built and being tested at ETHZ

- RFI measurements at CERN RF chamber.
- Performance testing with kotekan

Approximate Performance (For 200 Gbps/node)

HIRAX-256:

~54 TeraOp/s/node (N=512, 50 MHz, U=13%)

HIRAX-1024:

~211 TeraOp/s/node (N=2048, 12.5 MHz, U=29%)

Lots of headroom for beamforming and other real-time analysis. Utilization likely to decrease.

Upcoming kotekan HIRAX-256 correlator papers

Thierry Viant, Andre Renard, Keith Vanderlinde and others

2x40Gbe NIC

Systematics / Chromaticity and Foregrounds

- Foregrounds are the primary challenge for 21cm cosmology
 - Galactic signal brighter by many orders of magnitude
- Signal and Foregrounds have different, *on-sky* properties
 - Galactic emission is:
 - Polarised
 - Strongly correlated over wide frequency bands
 - Structured on the sky in ~known way
 - In principle, there are not many mixed *on-sky* degrees of freedom
- Mode-mixing inherent in measurement is a major issue
 - Instrument has chromatic response fundamentally as well as arising from systematics
 - With perfect knowledge of the instrument, this can be accounted for, however the large contrast in signal strengths can make small reconstruction residuals a big problem

• Instument Simulation is critical!

ETH zürich

Systematics Focus - Cross-talk

ETH zürich

Dish design has been optimised for low cross-talk

- Deep, f/0.21 dishes currently planned
- Reduced systematic coupling effects as cost of aperture efficiency

Exploring full simulations of array-level coupling effects on redundancy

- Fast method-of-moments solver (QG)
- Incorporating array position dependent effects in simulations
- Effect of repointing on coupling to be evaluated

Aaron Ewall-Wice, Quentin Gueuning

Systematics Focus - Dish Surface and Assembly

- Perturbing faceted model of dish surface
 - Random and coherent distortions
- Exploring asymmetries from feed design and mount

ETH zürich

Benjamin Saliwanchik, Kit Gerodias, Sindhu Gaddam

Systematics Propagation to Science

Current dish requirements set by:

- Averaging down linearised per-feed systematics over redundant baselines
- Propagating residual to power spectrum

Extending to expanded simulations with:

- No explicit linearisation
- Fast relative and abs. calibration
- Differentiable with JAX to explore propagation of systematics through pipeline

Telescope mechanical parameter	Target precision (RMS)
Receiver position relative to focus	0.5 mm
Receiver orientation relative to boresight vector	2.5' polar and azimuthal
Dish surface deviations	1 mm
Dish vertex position relative to elevation axis	1 mm
Orthogonality of boresight vector and elevation axis	1'
Elevation axis position within the array	0.5 mm in array plane
	1 mm out of array plane
Elevation axis alignment within the array	1'
Elevation pointing angle	1'

ETH zürich

Thanks!