THE HI DISCS OF GALAXIES AS TRACERS OF THE BARYONIC PHYSICS OF GALAXY EVOLUTION

Jindra Gensior | 03.10.22 Institute for Computational Science, University of Zurich | jindra.gensior@uzh.ch

with Lucio Mayer, Robert Feldmann & the EMP team

Star formation & Feedback

Gas-regulator or "bathtub model"

e.g. Finlator & Davé 2008, Bouché+ 2010, Lilly+ 2013, Dekel+ 2013, Dekel & Mandelker+ 2014, Peng & Maiolino 2014, Belfiore+ 2019, Tacchella+2020

Star formation & Feedback

HI

Can we use **HI** to learn more about **star formation** and **stellar feedback** physics?

HI discs as tracers of star formation and feedback physics | Jindra Gensior | EAS 2022, SS5 | 01.07.22

Galaxies selected to have Milky Way halo-mass: $11.85 < \log{(M_{\rm halo}/M_{\odot})} < 12.48$

Cosmological zooms EMP-Pathfinder FIREbox cosmological volume Reina-Campos,...,JG+ 2022 Feldmann,...,JG+ subm. \odot HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

Galaxies selected to have Milky Way halo-mass: $11.85 < \log (M_{halo}/M_{\odot}) < 12.48$

THE SAMPLE: GALAXIES EVOLVED SELF-CONSISTENTLY ACROSS COSMIC TIME, INCLUDING A COLD ISM!

Galaxies selected to have Milky Way halo-mass: $11.85 < \log{(M_{\rm halo}/M_{\odot})} < 12.48$

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI SIZE-MASS RELATION

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22 Begum+2008, Obres

See also e.g. Broils & Rhee 1997, Verheijen & Sancisi 2001, Swaters+2002, Noordermeer+2005, 0.22 Begum+2008, Obreschkow+2009, Ponomareva+2016, Stevens+2019

HI SIZE-MASS RELATION

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

See also e.g. Broils & Rhee 1997, Verheijen & Sancisi 2001, Swaters+2002, Noordermeer+2005, 0.22 Begum+2008, Obreschkow+2009, Ponomareva+2016, Stevens+2019

HI MASS-SIZE RELATION

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI MASS-SIZE RELATION

All simulations follow mass-size relation

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

exponential profile $R > 0.8 R_{HI}$ (e.g

Swaters+2002, Bigiel & Blitz 2012, Wang+2014, Wang+2016)

exponential profile $R > 0.8 R_{HI}$ (e.g

Swaters+2002, Bigiel & Blitz 2012, Wang+2014, Wang+2016)

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

Gensior+2022a, subm.

HI DISC SCALE HEIGHTS

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI DISC SCALE HEIGHTS

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI DISC SCALE HEIGHTS

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

HI DISC MORPHOLOGY

EMP-*Pathfinder* $\epsilon_{\rm ff} = 20\%$

 $\epsilon_{\rm ff} = f(\alpha_{\rm vir}, \mathcal{M})$

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | 03.10.22

SUMMARY

- HI discs are extremely sensitive to the physics of star formation and stellar feedback:
 - Central HI surface density profile differs depending on SFR
 - Only FIREbox & multi free-fall SFE EMP-Pathfinder produce thin HI discs
 - Very different HI morphologies:
 - ➡ multi free-fall SFE EMP-Pathfinder galaxies have very smooth & symmetric HI discs
 - ➡ FIREbox: porous & sub-structured (very similar amount of structure in all discs)
 - ➡ constant SFE EMP-*Pathfinder*: very asymmetric
- To come: in-depth investigation of the physical drivers, power spectrum analysis, predictions for higher-z

HI discs as tracers of star formation and feedback physics | Jindra Gensior | Swiss SKA days | jindra.gensior@uzh.ch

