Phoebos Simulations into the Cosmic Dawn

- Darren Reed (presenter), Pedro Capelo, Floor van Donkelaar, Lucio Mayer (UZH); Tom Quinn (UW Seattle)
- Formation of first generations of galaxies
- Cosmological Smoothed Particle Hydrodynamical simulations
- Allocation on Piz Daint (GPU Nodes) at CSCS
 - SKACH Computing Platforms and Infrastructure Program
 - July 2022 June 2023

Darren Reed (UZH)

• (very) preliminary results & status update

Phoebos Simulations into the Cosmic Dawn

- Phoebos MR ("medium resolution") simulation using ChaNGa
- 32 billion particles, 100Mpc volume, Mgas < 10⁶ Msun
 - Need *large volume* for *statistics*. Small particle masses for *resolution*.
- Currently at redshift 14. plan to reach z~5.
- 100K Node hours used.
 - Job size: 2048 Nodes
 - Each Node. 12 cores/64GB + Nvidia Pascal P100 GPU

The PHOEBOS simulations roadmap:

Large cosmological volume (100 comoving Mpc)

Simulation code

- ChaNGa (Jetley et al. 2008, 2010; Menon et al. 2015)
 - gravity + hydrodynamical Smooth Particle Hydrodynamical (SPH) + astrophysics
 - Astrophysics: gas cooling; star formation; stellar feedback; ultra-violet background heating
 - Charm++ parallel programming framework
 - Scales efficiently with number of compute nodes
- Future bigger simulations plan to use SPH-EXA
 - PASC project: SPH-EXA2 (PI: Ciorba, CoPIs: Mayer, Cabezon)
 - see talks by Sebastian Keller + Osman Seckin Simsek; Axel Sanz
 - designed for exascale \rightarrow more particles + faster
 - in development to required physics for cosmological simulations with star formation

Gas Density slice

100 x 100 x 0.4 Mpc

redshift=22

Gas Density slice

100 x 100 x 0.4 Mpc

redshift=15

Darren Reed (UZH)

Gas Density slice

100 x 100 x 0.4 Mpc

redshift=13.7

<u>Some technical challenges so far</u>

Higher memory usage than expected

- due to memory allocated for GPU communication and memory associated with file writing
- → crashes in messy way if 1 node exceeds available memory
- Workarounds: shorter jobs. Stop and restart checkpoints written & disable core dumps
- Data Storage (>~ Petabyte)
- Data Analysis (tools not optimized for huge data)

Analysis pipeline

• Analysis pipeline products:

- Images (density maps, temperature maps)
- Galaxy identification using group (halo) finders (e.g. Amiga Halo Finder, AHF)
- Galaxy properties: formation, evolution, statistics (e.g. n vs time)
- Cosmic web: Evolution of gas distribution, gas inflows to galaxies

Strategies

- "Divide and conquer" strategies needed for all analysis for standard tools (e.g. pynbody)
 - Data too big (2TB+/snapshot) to fit into RAM on available shared memory machines
- Simplest: Cut simulation into subvolume files (e.g. slices + boundary region)
 - analyze each subvolume file independently
 - Inefficient but "always" possible
- Better way: Efficiently parallelized analysis tools that output all needed statistics
 - Efficient but usually impractical (need rewrite most analysis tools)
- *Ideal/perfect*: On the fly analysis tools integrated into the simulation code

Darren Reed (UZH)

1st galaxies region:

redshift 22

redshift 13.7

<u>1st galaxies region – redshift 13.7</u>

Darren Reed (UZH)

Summary: Phoebos Simulations into the Cosmic Dawn Formation of first generations of galaxies – galaxies resolved at redshift 14 3 guarters remain of Piz Daint allocation Work continues on analysis pipeline Darren Reed (UZH)

End:

