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Interferometric Imaging in Radio Astronomy
The challenges ? How to go beyond CLEAN ?

2011

2008

1974
● Some weaknesses:

○ Noise robustness

○ Large FOV: convolution 
model less accurate

○ Stopping criterion

Our approach:

● Optimization problem with 

sparsity-promoting penalty
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The data model
Computational imaging seen as a linear inverse problem
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The data model
Computational imaging seen as a linear inverse problem

rmax=10 km, 398 stations

● Van Cittert - Zernike theorem:

Visibility 
function

● Partial UV coverage:

● Measurement equation:

Visibility

Sky Image
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Solving with the LASSO optimization problem
Sparse recovery and robustness to noise

Point sources
model

Sparse
images
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Solving with the LASSO optimization problem
Sparse recovery and robustness to noise

Point sources
model

Sparse
images

● The LASSO optimization problem:
Grid-based

=
raster image
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The PolyCLEAN Algorithm
A fast and scalable solver for the LASSO
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[Jarret et al., 2021]
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A fast and scalable solver for the LASSO

Identification of 
components

The PolyCLEAN Algorithm
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[Jarret et al., 2021]
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A fast and scalable solver for the LASSO

Support 
constrained 

solution

The PolyCLEAN Algorithm

1 

[Jarret et al., 2021]
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1. Convergence guarantee:
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Key points to keep in mind 

1. Convergence guarantee:

➢ convergence towards optimum of the LASSO objective function, speed

2. Much faster in practice:

➢ Similar to APGD for sparse problems, which has speed 

3. Sparse iterates:

➢ Low memory requirements, scalability in terms of image size

4. Similar to CLEAN, but with a defined objective function:

➢ Interpretation thanks to the objective (representer theorem, bayesian 

interpretation for noise)

The PolyCLEAN Algorithm
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Performances in simulations
Simulated data with RASCIL

Parameters:
● 100 sources
● FOV: 20 degrees
● image size: 512*512
● Phase center: 15, -45 (deg)

Sky Image
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Performances in simulations
Simulated data with RASCIL

● 236 antennas, 27730 baselines
● Frequency:

○ 108 Hz
● Bandwidth:

○ 106 Hz
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Performances in simulations
Results

Convolution with fitted 
CLEAN beam:

CLEAN runtime:  50s

PolyCLEAN runtime:  60s
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Conclusions and future work

● PolyCLEAN = Polyatomic Frank-Wolfe for Radio Astronomy:

✅ solves a LASSO problem

✅ Scalable (by design)

✅ Competitive run time
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Conclusions and future work

● Improvements and extensions:

➕ Use NUFFT instead of Nifty-Gridder (time and precision improvements)

➕ Run on real world and larger scale problems 

➕ Develop extended sources reconstruction

● PolyCLEAN = Polyatomic Frank-Wolfe for Radio Astronomy:

✅ solves a LASSO problem

✅ Scalable (by design)

✅ Competitive run time
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The data model
Computational imaging seen as a linear inverse problem
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Performances in simulations
Results

5 integration times: [-π/6, +π/6] 
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