FIRST AI FOR DEEP SUPER-RESOLUTION WIDE-FIELD IMAGING IN RADIO ASTRONOMY:

unveiling structure in ESO 137-006

Prof. Yves Wiaux, Edinburgh

with A. Dabbech, M. Terris, C. Tang, A. Wilber, A. Jackson

Swiss SKA days, October 3-4 2022, Lugano

RI IMAGING CHALLENGE IN THE SKA ERA

Aperture synthesis by radio interferometry provides access to high resolution high dynamic range. But forming an image x from visibility data y is an ill-posed inverse problem.

Data model: incomplete Fourier sampling of the sky:

$$y = \Phi x + n$$

Reconstruction algorithms are needed, leveraging a prior image model to regularise and solve the problem:

$$m{y}
ightarrow m{x}$$

Accurate models needed for precision

The Square Kilometre Array

SKA will target unprecedented resolution and sensitivity regimes, leading to EB data volumes and PB wideband image sizes.

Image credit SKA organisation

- Reconstruction algorithms must be scalable
- CLEAN is scalable but sub-optimal and requires manual intervention

PROPOSED AI FRAMEWORK FOR DEEP SUPER-RESOLUTION WIDE-FIELD RI IMAGING

Terris et al., MNRAS accepted, arXiv:2202.12959 Dabbech et al., ApJL submitted, arXiv:2207.11336

Convex optimisation provides a powerful framework to solve inverse problems via highly iterative algorithms.

$$\mathbf{x}^{\star} \in \operatorname*{argmin}_{\mathbf{x}} \Big\{ g(\mathbf{x}; \mathbf{y}) = f(\mathbf{x}; \mathbf{y}) + r(\mathbf{x}) \Big\}$$

• $f(\mathbf{x}; \mathbf{y})$: data-fidelity term; $r(\mathbf{x})$: regularisation term

VERSATILE THEORY:

- Provides iterative algorithms with convergence guarantees
- Allows advanced regularisation for precision
- Provides parallel algorithmic structures for scalability

The Forward-Backward (FB) algorithm is a simple and flexible optimisation structure.

$$\mathbf{x}^{\star} \in \operatorname*{argmin}_{\mathbf{x}} \Big\{ g(\mathbf{x}; \mathbf{y}) = f(\mathbf{x}; \mathbf{y}) + r(\mathbf{x}) \Big\}$$

• f(x; y): differentiable; r(x): differentiable or not

Iteration structure: (reminiscent of, but more general than, CLEAN)

$$\boldsymbol{x}^{(i)} = \operatorname{prox}_{r} \left(\boldsymbol{x}^{(i-1)} - \gamma \nabla f \left(\boldsymbol{x}^{(i-1)} \right) \right)$$

- $\checkmark\,$ forward gradient descent data-fidelity step
- \checkmark backward regularisation step involving prox_r
- \checkmark the proximal operator prox_r is an image denoiser

Unconstrained SARA leverages FB with handcrafted regularisation for monochromatic intensity imaging.

- Data fidelity term: $f(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} \mathbf{\Phi}\mathbf{x}||_2^2$ (Gaussian noise)
- Regularisation term: log-sum prior (generalising l₁) promoting average sparsity in a redundant wavelet dictionary

$$\mathbf{r}(\mathbf{x}) = \eta \sum_{n=1}^{B} \rho \log \left(1 + \rho^{-1} \left| \left(\mathbf{\Psi}^{\dagger} \mathbf{x} \right)_{n} \right| \right) + \iota_{\mathbb{R}^{N}_{+}}(\mathbf{x})$$

Iteration structure:

$$\boldsymbol{x}^{(i)} = \operatorname{prox}_{\boldsymbol{r}} \left(\boldsymbol{x}^{(i-1)} + \gamma \boldsymbol{\Phi}^{\dagger} \left(\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}^{(i-1)} \right) \right)$$

SARA's proximal operator is sub-iterative

AI for Regularisation in Imaging (AIRI)

AIRI leverages FB, plugging a learned DNN denoiser in lieu of a proximal operator for monochromatic intensity imaging (plug-and-play approach).

- ► Data fidelity term: $f(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} \mathbf{\Phi}\mathbf{x}||_2^2$ (Gaussian noise)
- Regularisation term: implicitly defined by a learned DNN denoiser
- Requires tailored training approach to ensure algorithm convergence
- Iteration structure:

$$\mathbf{x}^{(i)} = \mathsf{DNN}\left(\mathbf{x}^{(i-1)} + \gamma \mathbf{\Phi}^{\dagger} \left(\mathbf{y} - \mathbf{\Phi}\mathbf{x}^{(i-1)}\right)\right)$$

Learning opens the door to powerful physical regularisation

DNNs provide acceleration over sub-iterative proximal operators

Fully parallesised and scalable AI framework for RI

10 / 14

The algorithmic framework is parallelised both in its forward and backward steps, to run on high performance computing hardware.

- Parallel denoising via image faceting
- Parallel gradient step via decomposition of Φ[†]Φ into sparse and low-dimensional blocks
- Parallelisation degree automated depending on hardware

REVISITING ESO137-006 FROM MEERKAT DATA

Dabbech et al., ApJL submitted, arXiv:2207.11336

Wide-field imaging of ESO137-006 with MeerKAT data (Collab. SARAO).

WSClean (1.4GHz; 4k x 4k image; 11GB data; compute cost: 236 CoreH; precision: instrument resolution)

Wide-field imaging of ESO137-006 with MeerKAT data (Collab. SARAO).

uSARA (1.4GHz; 4k x 4k image; 11GB data; compute cost: 2377 CoreH; precision: super-resolved)

Wide-field imaging of ESO137-006 with MeerKAT data (Collab. SARAO).

AIRI (1.4GHz; 4k × 4k image; 11GB data; compute cost: 1028 CoreH; precision: further super-resolved, improved dynamic range)

Conclusion

Al opens the door to further precision and scalability in RI imaging

Ongoing evolutions beyond first uSARA & AIRI incarnations

- $\checkmark\,$ Investigate advanced denoisers: architectures, databases, losses
- \checkmark Add wideband, polarisation, calibration functionalities
- ✓ Translate current Matlab code into C++ (Puri-Psi)
- ✓ Application to ASKAP data (2 articles in prep.)
- $\checkmark\,$ Application to EHT VLBI data

[We are hiring at PhD, postdoc., and Assist. Prof. level]

Wide-field imaging of ESO137-006 with MeerKAT data (Collab. SARAO).

WSClean (1.05GHz; 4k × 4k image; 8.2GB data; compute cost: 132 CoreH; precision: instrument resolution)

Wide-field imaging of ESO137-006 with MeerKAT data (Collab. SARAO).

uSARA (1.05GHz; 4k x 4k image; 8.2GB data; compute cost: 1120 CoreH; precision: super-resolved)

Wide-field imaging of ESO137-006 with MeerKAT data (Collab. SARAO).

AIRI (1.05GHz; 4k × 4k image; 8.2GB data; compute cost: 480 CoreH; precision: further super-resolved, improved dynamic range)

