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BARYONS IN GALAXY FORMATION

Dark Matt B H
e Baryonic / Hl physics on non-linear scales highly complex ark viatter aryons (gas/H, stars)

e Hydrodynamical simulations are most principled
approach:
+ predict baryons on all scales and across cosmic history

+ can test various physical models (e.g. feedback, UV background
evolution, etc.)

- expensive (computing power, storage, time, money, etc.)
e.g. lllustris TNG 18 million CPU hours (Nelson et al. 2019)

Feldmann et al. (2022)

Neural Networks as cosmic emulators can mitigate the
large computational costs
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BARYONS IN GALAXY FORMATION

Application
for enriching large dark matter simulations with baryons

e Baryonic / Hl physics on non-linear scales highly comple: ESRGET

e Hydrodynamical simulations are most principled
approach:
+ predict baryons on all scales and across cosmic history

+ can test various physical models (e.g. feedback, UV background
evolution, etc.)

- expensive (computing power, storage, time, money, etc.)
e.g. lllustris TNG 18 million CPU hours (Nelson et al. 2019)

Neural Networks as cosmic emulators can mitigate the
large computational costs
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. Feedback In Realistic Environments

TWO TYPES OF SIMULATIONS

Cosmological volume Cosmological Zoom-in

FIREbox
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Feldmann et al. (2022) Angles-Alcazar et al. (2017) g
e Boxsize = 22 cMpc, FIRE-2 physics e Few cMpc region, FIRE-2 physics

e 2x10243 (gas + DM) particles e 4 massive haloes

o my==6- 10* M, Ax tens of pc o my=3- 104M®, Ax tens of pc




NEURAL NETWORK MODEL

Generator Critic

e Goal: We want a generative model (NN) that can synthesize
H from dark matter on the field level:

- condition: x = dark matter map

- hoise: n = drawn from N(0, 1)
-target: y=Hi map 2x| Conv2d 2x| Conv2d
- model stochasticity p(y | x) Pool2d P——
e Generative adversarial Network (wgan) =
( \ () :
- fully convolutional generator 2x| Conv2d 2><
- paired with standard critic network Dol Upsampling ZX

e Training by minimizing respective losses:

Conv2d
L= -l D

L. = + C(fake) — C(real) + reg .
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NEURAL NETWORK MODEL

e Goal: We want a generative model (NN) that can synthesize

Hi from dark matter on the field level:
- condition: x = dark matter map

- noise: n = drawn from N(O, 1)
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- model stochasticity p(y | x)
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NEURAL NETWORK MODEL

e Goal: We want a generative model (NN) that can synthesize

Hi from dark matter on the field level:
- condition: x = dark matter map

- noise: n = drawn from N(O, 1)

- target: y =Himap

- model stochasticity p(y | x)

Generative adversarial Network (wgan)

- fully convolutional generator

- paired with standard critic network

Training by minimizing respective losses:
L; = — C(fake)
L. = + C(fake) — C(real) + reg .

update network parameters

until converged

ds
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VISUAL PERFORMANCE

200°ckpc /h
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DM TO HI MASS RELATION

* NNis a halo-free method!
e Measure projected masses within R ;.

e For M, > 10'°M_: main predictor is M,,,

For M,,, < 10'°M: strong importance of

environmental information

e Indirectly we find no strong dependence on
dynamical information on the DM to H; relation
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NN can model DM to H; mass relation beyond the regime
of analytical models down to dwarf galaxy scales
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MODEL APPLICATION: UPSCALING

e Train from LR dm to HR H;

LR dm (643) ' HR gas (10243)

s
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2 cMpc/h

e Check summary statistics

CDDF Power Bispectrum

T
LR = HR

1017

10-20

flem?]

-23 |
10 — FB 1024

—— WGAN 64 | dmo ds
—— WGAN 64 | dmh ds
)
}

t t t t t t t
05 F i 1t E
< 00 W
-0.5 F ElS A \
L L L .
10t 10%® 10%° 1022 1073 1072 107t 10° 1072 107t
Ny, [cm™2] klh/ckpcl klh/ckpcl

10-26 |

Emulator for upscaling on the field level
— creation of large HR mocks
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SUMMARY

e Advantages e Limitations

+ Fast! (103 x faster than simulation) Dataset specific: need to retrain for different simulations, cosmologies,
resolutions, etc. (vs. semi-analytical models)

+ Emulation on the field level
Completely data driven:

+ Upscaling to larger volumes learns by experience, not directly trained on the physics
designed to emulate HR gas for large volumes

+ Captures stochasticity: infinte realizations possible

e Disadvantages e Future improvements

- Not scale-free o Extend to more target fields: H,, stars, etc.
Need to retrain for different pixel and mass resolutions
o Include additional dm predictors
- Black box approach dynamical information (e.g. velocity dispersion)
which dm features are key for the emulation?
o Synthesize information from multiple snapshots
interpolate along time axis

MB+ (2021): From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with Deep Learning
arxiv.org/abs/2110.11970
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SPECTRAL ASPECTS

e Power Spectrum: P(k) ~ < 6,0, >

- Histogram of Fourier amplitudes
- Fourier transform of the 2-point correlation function

e Cross correlations: (k) = P, ,/(P, P,)""

- which scales are directly correlated?

- decoupling scale = importance of stochasticity

e Bispectrum: B(k) ~ < 6,0,0;» >

- sensitive to Fourier phase shifts
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The correlation from Dark Matter to Baryons is both
deterministic and stochastic, depending on the scale of
interest!




UPSAMPLING MODELS: PERFORMANCE
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