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BARYONS IN GALAXY FORMATION
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Dark Matter Baryons (gas / HI, stars)

Feldmann et al. (2022)

• Baryonic / HI physics on non-linear scales highly complex


• Hydrodynamical simulations are most principled 
approach:


+ predict baryons on all scales and across cosmic history


+ can test various physical models (e.g. feedback, UV background 
evolution, etc.)


- expensive (computing power, storage, time, money, etc.) 
e.g. Illustris TNG 18 million CPU hours (Nelson et al. 2019)


Neural Networks as cosmic emulators can mitigate the 
large computational costs
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TWO TYPES OF SIMULATIONS
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• Boxsize = 22 cMpc, FIRE-2 physics


• 2 x 10243 (gas + DM) particles


• ,  tens of pcmb = 6 ⋅ 104 M⊙ Δx

• Few cMpc region, FIRE-2 physics


• 4 massive haloes


• ,  tens of pcmb = 3 ⋅ 104 M⊙ Δx

Cosmological Zoom-in

Feldmann et al. (2022) Angles-Alcazar et al. (2017)

Cosmological volume

FIREbox
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• Goal: We want a generative model (NN) that can synthesize 
HI from dark matter on the field level: 
- condition: x = dark matter map 

- noise:        n = drawn from  

- target:       y = HI map 

→ model stochasticity 


• Generative adversarial Network (wgan) 

- fully convolutional generator 

- paired with standard critic network


• Training by minimizing respective losses: 
 

N(0, 1)

p(y |x)

LG = − C(fake)
LC = + C(fake) − C(real) + reg .
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VISUAL PERFORMANCE
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HIdm HI sim HI HI HIwgan wgan wgansim



DM TO HI MASS RELATION
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• NN is a halo-free method!


• Measure projected masses within 


• For : main predictor is   

For : strong importance of 

environmental information


• Indirectly we find no strong dependence on 
dynamical information on the DM to HI relation

Rvir

Mdm ≥ 1010M⊙ Mdm

Mdm < 1010M⊙

NN can model DM to HI mass relation beyond the regime 
of analytical models down to dwarf galaxy scales

Padmanabhan & Kulkarni (2017)



LR 

10 cMpc h−1

MODEL APPLICATION: UPSCALING

8

• Train from LR dm to HR HI

• Check summary statistics

Emulator for upscaling on the field level 

→ creation of large HR mocks

CDDF Power Bispectrum
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• Train from LR dm to HR HI

• Check summary statistics

Emulator for upscaling on the field level 

→ creation of large HR mocks

2.5 cMpc h−1

250 ckpc h−1

10 cMpc h−1

Apply HIHR

30 ckpc h−1

CDDF Power Bispectrum



SUMMARY
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• Advantages


+ Fast! (103 x faster than simulation)


+ Emulation on the field level


+ Upscaling to larger volumes 
designed to emulate HR gas for large volumes


+ Captures stochasticity: infinte realizations possible


• Limitations


+ Dataset specific: need to retrain for different simulations, cosmologies, 
resolutions, etc. (vs. semi-analytical models)


+ Completely data driven:  
learns by experience, not directly trained on the physics 

• Future improvements


o Extend to more target fields: H2, stars, etc.


o Include additional dm predictors 
dynamical information (e.g. velocity dispersion)


o Synthesize information from multiple snapshots 
interpolate along time axis 

• Disadvantages


- Not scale-free 
Need to retrain for different pixel and mass resolutions


- Black box approach 
which dm features are key for the emulation?

MB+ (2021): From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with Deep Learning

arxiv.org/abs/2110.11970



BACKUP SLIDES
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• Power Spectrum:  

- Histogram of Fourier amplitudes 

- Fourier transform of the 2-point correlation function


• Cross correlations:  

- which scales are directly correlated? 

- decoupling scale → importance of stochasticity


• Bispectrum:  

- sensitive to Fourier phase shifts 

P(k) ∼ < δkδk′￼
>

r(k) = Pmb/(PmPb)1/2

B(k) ∼ < δkδk′￼
δk′￼′￼

>

The correlation from Dark Matter to Baryons is both 
deterministic and stochastic, depending on the scale of 

interest!

SPECTRAL ASPECTS

r(
k)

k [cMpc/h]



UPSAMPLING MODELS: PERFORMANCE
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