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BARYONS IN GALAXY FORMATION
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Dark Matter Baryons (gas / HI, stars)

Feldmann et al. (2022)

• Baryonic / HI physics on non-linear scales highly complex 

• Hydrodynamical simula7ons are most principled 
approach: 

+ predict baryons on all scales and across cosmic history 

+ can test various physical models (e.g. feedback, UV background 
evolu7on, etc.) 

- expensive (compu7ng power, storage, 7me, money, etc.) 
e.g. Illustris TNG 18 million CPU hours (Nelson et al. 2019) 

Neural Networks as cosmic emulators can mitigate the 
large computational costs
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TWO TYPES OF SIMULATIONS
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• Boxsize = 22 cMpc, FIRE-2 physics 

• 2 x 10243 (gas + DM) par7cles 

• ,  tens of pcmb = 6 ⋅ 104 M⊙ Δx

• Few cMpc region, FIRE-2 physics 

• 4 massive haloes 

• ,  tens of pcmb = 3 ⋅ 104 M⊙ Δx

Cosmological Zoom-in

Feldmann et al. (2022) Angles-Alcazar et al. (2017)

Cosmological volume

FIREbox



NEURAL NETWORK MODEL
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• Goal: We want a genera7ve model (NN) that can synthesize 
HI from dark mafer on the field level: 
- condi7on: x = dark mafer map 

- noise:        n = drawn from  

- target:       y = HI map 

→ model stochas7city  

• Genera7ve adversarial Network (wgan) 

- fully convolu7onal generator 

- paired with standard cri7c network 

• Training by minimizing respec7ve losses: 
 

N(0, 1)

p(y |x)

LG = − C(fake)
LC = + C(fake) − C(real) + reg .
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VISUAL PERFORMANCE
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HIdm HI sim HI HI HIwgan wgan wgansim



DM TO HI MASS RELATION
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• NN is a halo-free method! 

• Measure projected masses within  

• For : main predictor is   

For : strong importance of 

environmental informa7on 

• Indirectly we find no strong dependence on 
dynamical informa7on on the DM to HI rela7on

Rvir

Mdm ≥ 1010M⊙ Mdm

Mdm < 1010M⊙

NN can model DM to HI mass relation beyond the regime 
of analytical models down to dwarf galaxy scales

Padmanabhan & Kulkarni (2017)



LR 

10 cMpc h−1

MODEL APPLICATION: UPSCALING
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• Train from LR dm to HR HI

• Check summary sta7s7cs

Emulator for upscaling on the field level  
→ creation of large HR mocks

CDDF Power Bispectrum
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• Train from LR dm to HR HI

• Check summary sta7s7cs

Emulator for upscaling on the field level  
→ creation of large HR mocks

2.5 cMpc h−1

250 ckpc h−1

10 cMpc h−1

Apply HIHR

30 ckpc h−1

CDDF Power Bispectrum



SUMMARY
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• Advantages 

+ Fast! (103 x faster than simula7on) 

+ Emula7on on the field level 

+ Upscaling to larger volumes 
designed to emulate HR gas for large volumes 

+ Captures stochas7city: infinte realiza7ons possible 

• Limita7ons 

+ Dataset specific: need to retrain for different simula7ons, cosmologies, 
resolu7ons, etc. (vs. semi-analy7cal models) 

+ Completely data driven:  
learns by experience, not directly trained on the physics 

• Future improvements 

o Extend to more target fields: H2, stars, etc. 

o Include addi7onal dm predictors 
dynamical informa7on (e.g. velocity dispersion) 

o Synthesize informa7on from mul7ple snapshots 
interpolate along 7me axis 

• Disadvantages 

- Not scale-free 
Need to retrain for different pixel and mass resolu7ons 

- Black box approach 
which dm features are key for the emula7on?

MB+ (2021): From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with Deep Learning 
arxiv.org/abs/2110.11970



BACKUP SLIDES
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• Power Spectrum:  

- Histogram of Fourier amplitudes 

- Fourier transform of the 2-point correla7on func7on 

• Cross correla7ons:  

- which scales are directly correlated? 

- decoupling scale → importance of stochas7city 

• Bispectrum:  

- sensi7ve to Fourier phase shils 

P(k) ∼ < δkδk′ 
>

r(k) = Pmb/(PmPb)1/2

B(k) ∼ < δkδk′ 
δk′ ′ 

>

The correlation from Dark Matter to Baryons is both 
deterministic and stochastic, depending on the scale of 

interest!

SPECTRAL ASPECTS

r(
k)

k [cMpc/h]



UPSAMPLING MODELS: PERFORMANCE
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