EMBER: EMULATING GAS FIELDS FROM DARK MATTER SIMULATIONS

Mauro Bernardini, PhD student University of Zürich, Institute of Computational Science

Supervisor: Robert Feldmann In collaboration with: Luigi Bassini, Jindra Gensior, Elia Cenci, FIRE team

SKACH, 4.10.22

Universität Zürich^{uz}

- Baryonic / HI physics on non-linear scales highly complex
- Hydrodynamical simulations are most principled approach:
 - + predict baryons on all scales and across cosmic history
 - + can test various physical models (e.g. feedback, UV background evolution, etc.)
 - expensive (computing power, storage, time, money, etc.) e.g. Illustris TNG 18 million CPU hours (Nelson et al. 2019)

Dark Matter

Baryons (gas / H_I, stars)

Neural Networks as cosmic emulators can mitigate the large computational costs

- Baryonic / HI physics on non-linear scales highly complex
- Hydrodynamical simulations are most principled approach:
 - + predict baryons on all scales and across cosmic history
 - + can test various physical models (e.g. feedback, UV background evolution, etc.)
 - expensive (computing power, storage, time, money, etc.) e.g. Illustris TNG 18 million CPU hours (Nelson et al. 2019)

Dark Matter

Baryons (gas / H_I, stars)

Neural Networks as cosmic emulators can mitigate the large computational costs

- Baryonic / HI physics on non-linear scales highly complex
- Hydrodynamical simulations are most principled approach:
 - + predict baryons on all scales and across cosmic history
 - + can test various physical models (e.g. feedback, UV background evolution, etc.)
 - expensive (computing power, storage, time, money, etc.) e.g. Illustris TNG 18 million CPU hours (Nelson et al. 2019)

Neural Networks as cosmic emulators can mitigate the large computational costs

Dark Matter

Baryons (gas / H_I, stars)

BARYONS IN GALAXY FORMATION

- Baryonic / HI physics on non-linear scales highly complex
- Hydrodynamical simulations are most principled approach:
 - + predict baryons on all scales and across cosmic history
 - + can test various physical models (e.g. feedback, UV background evolution, etc.)
 - expensive (computing power, storage, time, money, etc.) e.g. Illustris TNG 18 million CPU hours (Nelson et al. 2019)

Neural Networks as cosmic emulators can mitigate the large computational costs

Application for enriching large dark matter simulations with baryons

Cosmological volume

- Boxsize = 22 cMpc, FIRE-2 physics
- 2 x 1024³ (gas + DM) particles
- $m_b = 6 \cdot 10^4 M_{\odot}$, Δx tens of pc

Cosmological Zoom-in

- Few cMpc region, FIRE-2 physics
- 4 massive haloes
- $m_b = 3 \cdot 10^4 M_{\odot}$, Δx tens of pc

NEURAL NETWORK MODEL

- <u>Goal</u>: We want a generative model (NN) that can synthesize
 H_I from dark matter on the <u>field</u> level:
 - condition: x = dark matter map
 - noise: n = drawn from N(0, 1)
 - target: $y = H_1 map$
 - \rightarrow model stochasticity p(y | x)
- Generative adversarial Network (wgan)
 - fully convolutional generator
 - paired with standard critic network
- Training by minimizing respective losses: $L_G = -C(\text{fake})$ $L_C = +C(\text{fake}) - C(\text{real}) + \text{reg}$.

- <u>Goal</u>: We want a generative model (NN) that can synthesize
 H_I from dark matter on the <u>field</u> level:
 - condition: x = dark matter map
 - noise: n = drawn from N(0, 1)
 - target: $y = H_1 map$
 - \rightarrow model stochasticity p(y | x)
- Generative adversarial Network (wgan)
 - fully convolutional generator
 - paired with standard critic network
- Training by minimizing respective losses: $L_G = -C(\text{fake})$ $L_C = +C(\text{fake}) - C(\text{real}) + \text{reg}$.

- <u>Goal</u>: We want a generative model (NN) that can synthesize
 H_I from dark matter on the <u>field</u> level:
 - condition: x = dark matter map
 - noise: n = drawn from N(0, 1)
 - target: $y = H_1 map$
 - \rightarrow model stochasticity p(y | x)
- Generative adversarial Network (wgan)
 - fully convolutional generator
 - paired with standard critic network
- Training by minimizing respective losses: $L_G = -C(\text{fake})$ $L_C = +C(\text{fake}) - C(\text{real}) + \text{reg}$.

NEURAL NETWORK MODEL

- <u>Goal</u>: We want a generative model (NN) that can synthesize
 H_I from dark matter on the <u>field</u> level:
 - condition: x = dark matter map
 - noise: n = drawn from N(0, 1)
 - target: $y = H_1 map$
 - \rightarrow model stochasticity $p(y \mid x)$
- Generative adversarial Network (wgan)
 - fully convolutional generator
 - paired with standard critic network
- Training by minimizing respective losses: $L_G = -C(\text{fake})$ $L_C = +C(\text{fake}) - C(\text{real}) + \text{reg}$.

- <u>Goal</u>: We want a generative model (NN) that can synthesize
 H_I from dark matter on the <u>field</u> level:
 - condition: x = dark matter map
 - noise: n = drawn from N(0, 1)
 - target: $y = H_1 map$
 - \rightarrow model stochasticity p(y | x)
- Generative adversarial Network (wgan)
 - fully convolutional generator
 - paired with standard critic network
- Training by minimizing respective losses: $L_G = -C(\text{fake})$

$$L_C = + C(\text{fake}) - C(\text{real}) + \text{reg}$$

update network parameters until converged

VISUAL PERFORMANCE

 $\lg \Sigma [M_{\odot}h/ckpc^2]$

4 5 6 lg Σ [M_☉h/ckpc²] 7 3 4

DM TO HI MASS RELATION

- NN is a halo-free method!
- Measure **projected** masses within *R*_{vir}
- For $M_{dm} \ge 10^{10} M_{\odot}$: main predictor is M_{dm} For $M_{dm} < 10^{10} M_{\odot}$: strong importance of environmental information
- Indirectly we find **no** strong dependence on dynamical information on the DM to H_I relation

NN can model DM to H_I mass relation beyond the regime of analytical models down to dwarf galaxy scales

MODEL APPLICATION: UPSCALING

• Train from LR dm to HR H_I

• Check summary statistics

Emulator for upscaling on the field level \rightarrow creation of large HR mocks

MODEL APPLICATION: UPSCALING

• Train from LR dm to HR H_I

• Check summary statistics

Emulator for upscaling on the field level \rightarrow creation of large HR mocks

 $\log_{10} M [M_{\odot}/h]$

SUMMARY

- Advantages
 - + Fast! (10³ x faster than simulation)
 - + Emulation on the field level
 - + Upscaling to larger volumes designed to emulate HR gas for large volumes
 - + Captures stochasticity: infinte realizations possible
- Disadvantages
 - Not scale-free Need to retrain for different pixel and mass resolutions
 - Black box approach which dm features are key for the emulation?

- Limitations
 - + Dataset specific: need to retrain for different simulations, cosmologies, resolutions, etc. (vs. semi-analytical models)
 - + Completely data driven: learns by experience, not directly trained on the physics

- Future improvements
 - o Extend to more target fields: H₂, stars, etc.
 - Include additional dm predictors dynamical information (e.g. velocity dispersion)
 - o Synthesize information from multiple snapshots interpolate along time axis

MB+ (2021): From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with Deep Learning arxiv.org/abs/2110.11970

BACKUP SLIDES

SPECTRAL ASPECTS

- Power Spectrum: $P(k) \sim < \delta_k \delta_{k'} >$
 - Histogram of Fourier amplitudes
 - Fourier transform of the 2-point correlation function
- Cross correlations: $r(k) = P_{mb}/(P_m P_b)^{1/2}$
 - which scales are directly correlated?
 - decoupling scale \rightarrow importance of stochasticity
- Bispectrum: $B(k) \sim \langle \delta_k \delta_{k'} \delta_{k''} \rangle$
 - sensitive to Fourier phase shifts

The correlation from Dark Matter to Baryons is both deterministic and stochastic, depending on the scale of interest!

