ACCELERATE RADIATIVE TRANSFER SIMULATIONS WITH PHYSICS INFORMED NEURAL NETWORKS MASTER'S THESIS

UNDER SUPERVISION OF MICHELE BIANCO EMMA TOLLEY JEAN-PAUL KNEIB

DAMIEN KORBER

- EoR study is vital for Cosmology
- SKA-Low will allow detailed EoR observations
- Need simulations to compare to SKA observations

Reference: SKAO

SKA-Low demonstration images. Credit: SKAO (Media Kit)

EPOCH OF REIONIZATION SIMULATIONS

RAMSES-RT CODA I, II & III

C2-RAY

GRIZZLY

BEARS

. . .

EOR **SIMULATION**

References: Rosdahl+ (2013); Ocvirk+ (2016, 2020); Lewis+ (2021); Mellema+ (2006); Ghara+ (2018)

"ON-THE-FLY" APPROACH

N-BODY HYDRODYNAMIC **RADIATIVE TRANSFER**

POST-PROCESSED APPROACH

N-BODY HYDRODYNAMIC

RADIATIVE TRANSFER

• C^2 -Ray

 State of the art 3D RT code
 Physically motivated results
 Very computationally intensive (millions of corehours)

References: Mellema+ (2006); Ghara+ (2018)

Grizzly 1D RT code X Very approximated but physically motivated results

Light to run (a few core-hours)

• PINION

- Train neural network on small C²-Ray simulation
- Produce larger scale RT simulations:

✓ Faster than C²-Ray

 \checkmark As accurately as C²-Ray

PHYSICS INFORMED NEURAL NETWORK FOR REIONIZATION

<u>arXiv:2208.13803</u>

PHYSICS INFORMED NEURAL NETWORKS (PINN)

References: Karniadakis+ (2021)

Physics informed neural network with learning bias

ODE CONSTRAINT

$$\frac{dx_{HII}}{dt} = (1 - x)$$

 $(x_{HII})\Gamma - \mathscr{C}\alpha_B \bar{n}_H x_{HII}^2$

THE NETWORK

- We want to predict x_{HII} for every cells
- We expect that the main ionisation effect come from the nearby sources
- To predict one cell, feed the network with the small surrounding volume

x_{H}	HII	<i>x_{HII}</i>	<i>x_{HII}</i>	x _{HII}	
x_{H}	HII	<i>x_{HII}</i>	x _{HII}	X _{HII}	
x_{H}	HII	x _{HII}	<i>x_{HII}</i>	<i>x_{HII}</i>	
x_{H}	HII	x _{HII}	<i>x_{HII}</i>	<i>x_{HII}</i>	
x_{H}	HII	x _{HII}	x _{HII}	<i>x_{HII}</i>	

PINION NETWORK ARCHITECTURE

11

- 1. Approximate the mean free path of light at each redshift: $\lambda_{\nu_{HI}} \approx \frac{c}{H(z)} \times 0.1[(1+z)/4]^{-2.55}$
- 2. Define a spherical kernel of radius $\lambda_{\nu_{\mu}}$
- 3. Convolve cube of sources mass with this kernel
 - Produces an propagating mask
 - Similar growth behaviour than ionization rate

Reference: Choudhury (2009)

IONIZATION RATE

PROPAGATING MASK

EXPERIMENTS

- Three different trainings scenarios for the same network
 - **PFD** (*Physics and Full Data*): training on the full evolution for the data and with the physics constraint
 - NP (No Physics): training on the full evolution for the data without the physics constraint
 - LD (Low Data): training on a limited sample of the evolution of the data and the physics constraint
- Training & predicting take about 85 GPU-hours but is highly parallelizable and can be strongly improved

Light-cone for a slice of x_{HII}

Light-cone for a slice of x_{HII}

Light-cone for a slice of x_{HII}

Light-cone for a slice of x_{HII}

redshift

Volume averaged evolution of x_{HII} for 5 different cases

- \checkmark In general, we obtained a good reproduction of the C²-Ray simulation V PINNs help reducing the training supervision LD performs as well as other trainings -Fully unsupervised training tested but didn't work -
 - Might work with initial condition -
- V PINNs help improving the EoR predictions in neural networks
- V PINION is fast for a EoR simulation

Inaccuracies from propagating mask

- Simplest possible model
- over-simplistic -

Imbalanced dataset for training - Induces bias in the prediction

Heavy improvement can be made to the propagating mask

→ We need a baseline comparison with Grizzly like Ghara+ (2018)

We need to test the up-scaling by training on a small simulation and predicting a large simulation

We are currently publishing results

Preprint on ArXiv: <u>arXiv:2208.13803</u>

Damien Korber <u>damien.korber@protonmail.ch</u>

Emma Tolley <u>emma.tolley@epfl.ch</u>

Preprint arXiv:2208.13803

THANK YOU FOR LISTENING

Michele Bianco mbianco@protonmail.com

Jean-Paul Kneib jean-paul.kneib@epfl.ch

