Calibration in the Presence of Satellites

Chris Finlay^{1,2} Bruce Bassett², Martin Kunz¹, Nadeem Oozeer²

> University of Geneva¹ SARAO²

Swiss SKA Days 2022 Oct 3-4, 2022

SARAO South African Badio

Astronomy Observatory

イロト イヨト イヨト

Outline

- 2 Simulation and Forward Model
- Osterior Results
- Application to Target Observation

Conclusion

2

Introduction

æ

イロト イロト イヨト イヨト

Introduction

- RFI in the L-band that is dominated by satellite sources.
- Our method removes satellite-based RFI but can be extended to other sources.

Figure: SARAO External Service Desk

Simulation and Forward Model

2

・ロト ・回ト ・ヨト ・ヨト

Simulation Definition

Figure: Simulation Diagram

э.

イロト イヨト イヨト イヨト

Posterior Results

э.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Gain Solutions

Chris Finlay (UNIGE)

Swiss SKA Days 2022 8 / 22

Orbit Constraints

Figure: Posterior Constraints from 5 minutes of calibration data

æ

Application to Target Observation

2

イロト イヨト イヨト イヨト

Flagging Improvement

Figure: Flagging comparison after decontamination

2

イロト イヨト イヨト イヨト

Imaging and Source Extraction

Figure: Flux estimation error on 100 source image

2

э.

▲□▶ ▲圖▶ ▲国▶ ▲国▶

- Calibration in contaminated channels
- Calibration constraints as good or better than standard
- Statistically consistent errors
- Target Obs. ightarrow 3x 9x ∞ more data
- Comparable source extraction to uncontaminated data

E-mail: christopher.finlay@unige.ch

(日) (四) (日) (日) (日)

Posterior Error Comparison Laplace vs MCMC

• • • • • • • • • •

Gain Constraints Error Analysis

2

Image Comparison

æ

Flagging All Baselines

2

イロト イヨト イヨト イヨト

Gain Constraints using Correlated RFI Amplitude

э

Gain Solutions using Correlated RFI Amplitude

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

RFI Visibility Sampling Rate Convergence

Probabilistic Model

Figure: Priors, Model and Likelihood

э