

Dish Structure Status

Ockert Strydom Domain specialist: Mechanical Engineering

MASUM - May 2022

Agenda

- What is DS?
- Where are we?
- Where are we going?
- Summary

Slide / 2

What is Dish Structure?

- Pedestal
- Turn Head
- Elevating Assembly
- Feed Indexer
- Control System

SKA-MPI Demonstrator under the beautiful Karoo sky.

Pedestal

Figure 11: Pedestal Overview

Upper pedestal section

Middle pedestal section

Ambienttemperatures

Looking up at Azimuth Cable Handler in the upper part of the pedestal.

LH: Test Equipment in the EMISC during Thermal & Ventilation QTP. RH: SKA-MPI Drive Cabinet.

Turnhead

- Turnhead rests on Azimuth Bearing and supports the:
 - Azimuth Actuators
 - Elevation Axis and Actuator
 - Elevating Assembly
- Turnhead stiffness optimised using topology optimisation

Turnhead seen from the rear.

Elevating Assembly

- Back up Structure (BUS)
 - Steel Ball and Strut Spaceframe
- Main Reflector (MR)
 - Aluminium Panels and Ribs
- Sub Reflector (SR)
 - Low CTE Carbon Fibre sandwich panels
- SR Support Structure (SS)
 - Combination Steel Ball and Carbon Fibre Strut Spaceframe
- Feed Indexer Interface
 - Hexapod using commercial structs.

Feed Indexer

- Design has been further optimised for SKA-001
 - Structurally simplified.
 - Improved bearing selection.
 - Improve walkways.
 - Improved maintenance access.
 - Improved weather seals.

Feed Indexer on SKA-MPI

Improved Feed Indexer for SKA-001

Control System

- Rexroth based system
- Azimuth Drive
 - Dual motors for Backlash compensation
- Elevation Actuator
 - High preload ball screw
 - Single motor and gearbox to drive nut
 - Stiff connections to structure.

Verification Demonstrators

Three prototypes have been built to date.

- SKA-P#1 located at CETC in Shijiazhuang built primarily to test integration of the structure and alignment of the Reflector panels.
- SKA-MPI Same structure as SKA-P#1 with OHB control system, located onsite in the Karoo and used to validate the Pointing, RF performance.
- SKA-P#2 is an upgrade of SKA-P#1 with a new CETC control system and will be used for performance testing of control system.

SKA-MPI at SKA Mid Site

SKA-P1 in Shijiazhuang

Programme & Status

List of the Qualification Test Procedures (QTP) performed on the different prototypes:

Qualification Test Procedure

DS Control System QTP – Functional

DS Reflector System Alignment and Performance QTP

DS EMI/RFI QTP

DS Optical Pointing and Servo System Performance QTF

DS RF Performance QTP

DS Power Distribution QTP

DS Lightning Protection QTP

DS Miscellaneous Requirements QTP

DS Ventilation and Thermal Load QTP

Recently completed IDR – awaiting final panel report.

- CDR is planned for A.S.A.P.
- Evaluating risk for early procurement of Long Lead Items.

	SKA-P#1	MPI	SKA-P#2	SKA-001
	N/A			QTP @ AA0.5
				QTP @ AA0.5
	N/A			QTP @ AA0.5
C	N/A			QTP @ AA0.5
	N/A		N/A	QTP @ AA0.5
	N/A		N/A	QTP @ AA0.5
	N/A		N/A	QTP @ AA0.5
	N/A		N/A	QTP @ AA0.5
	N/A		N/A	QTP @ AA0.5

Work Ahead

- Following the QTP's and IDR, we are focussing on:
 - Pointing
 - Increase Structural Stiffness
 - Improved Wind load (CFD) modelling
 - Improved Thermal modelling
 - Improved Dynamic modelling
 - Control System Performance
 - Closing out the Observations and Actions from IDR.

Structural Improvements

- Much work has been done to increase the stiffness of Structure to meet 2.5 Hz requirement.
- Major changes to Pedestal, Turnhead and Elevating Assy.
- Further optimisation underway for performance under wind loads.

Elevation angle (°)	15	45	60
Longitudinal Bending Mode (Elevation)	1.95	2.09	2.11
Torsional Mode (Azimuth)	1.99	2.01	2.02

Modal Frequencies of the Improved DS [Hz]

vation(°)	15	30	45	60	75	90
sional Mode (Azimuth)	2.77	2.67	2.60	2.54	2.51	2.5
gitudinal Bending Mode vation)	2.78	2.86	2.88	2.88	2.86	2.8
nsverse Bending Mode	3.42	3.46	3.48	3.48	3.47	3.4

Torsional Mode

Longitudinal Mode

Control System

- Complete the actuator Detail Design and ILS.
- Complete the EMI/RFI compliance test programme and completing any rework necessary.
- Complete the Dynamic model for SKA-001.

Complete the performance verification on SKA-P#2.

Summary

- We have advanced design solution.
- Just completed the IDR.
- Pointing and Control Systems is our focus.
- We are working to reaching CDR asap.

Thank you, questions?

We recognise and acknowledge the Indigenous peoples and cultures that have traditionally lived on the lands on which our facilities are located.

•

 \bullet

•