Interpretation framework for SKA observations

Sambit Giri

24 May 2022

21-cm signal to be observed by SKA

Different epochs of the Universe

Credit: NAOJ

Reionization seen with the 21-cm signal

Radiative transfer simulation (e.g. SG+2019b; SG & Mellema 2021)

Simulated SKA images

Instrumental effects using Tools21cm (e.g. SG+2018b; SG+2020)

Inference from 21-cm observations

Halo model

Halo model: power spectrum

 $P_{XY}(k,z) = P_{XY}^{1 h}(k,z) + P_{XY}^{2 h}(k,z),$

Ingredients for the halo model

Linear power spectrum

Halo mass function

Mass accretion

Halo bias

Stellar to halo mass relation

Flux profiles

 $P_{XY}^{1 \text{ h}}(k, z) = \frac{\beta_X \beta_Y}{(\bar{\rho} f_{\text{coll}})^2} \int dM \frac{dn}{dM} \tilde{f}_*^2 M^2 [u_X] [u_X]$ $P_{XY}^{2 \text{ h}}(k, z) = \frac{\beta_X}{(\bar{\rho} f_{\text{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M [u_X] b_X$ $\times \frac{\beta_Y}{(\bar{\rho}f_{\text{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M [u_Y] b_Y$ $P_{XY}(k, z) = P_{XY}^{1 \text{ h}}(k, z) + P_{XY}^{2 \text{ h}}(k, z),$

$$\tilde{f}_{\star}(M) = \frac{1}{M_{\rm ac}} \int f_{\star}(M) \dot{M}_{\rm ac} dt$$

Flux profiles

Validity of the approach

Schneider, SG, Mirocha (2021)

Constraining mixed dark matter models with SKA

Contains a mixtures of two components

- Cold DM
- Non-cold: WDM/FDM

$$f_{n\rm DM} = \frac{\Omega_{n\rm DM}}{\Omega_{n\rm DM} + \Omega_{n\rm DM}}$$

f_{nDM} < 20% (Boyarsky+2009)

Evolution of power spectra

- WCDM1 (m=5.0 keV, f=0.5)
- WCDM2 (m=5.0 keV, f=1.0)
- ---- WCDM3 (m=0.1 keV, f=0.05)
- WCDM3 (m=0.1 keV, f=0.10)

k~0.1 h/Mpc

(SG & Schneider 2022)

Mock observation at cosmic dawn

1000 hour observations

Instrumental effects are calculated using Tools21cm (SG+2020)

(SG & Schneider 2022)

Inference from 21-cm observations

Corner showing the posterior distribution

Constraints on cold + warm DM

 $\begin{array}{l} f\sim1:m_{\rm WDM}\gtrsim15~{\rm keV}~({\rm FLOOR},{\rm DPL}),\\ \gtrsim4~{\rm keV}~({\rm TRUNCATED})\\ {\rm CDM+hot~relic}:f\lesssim1\%~({\rm FLOOR},{\rm DPL},{\rm TRUNCATED}) \end{array}$

(SG & Schneider 2022)

TRUNCATED DPL FLOOR

--- SDSS (Baur+2017) --- SDSS+XQ+HR (Baur+2017)

Fast simulations to go beyond the power spectrum

Timothée Schaefer PhD student

Inference from 21-cm observations

Simulation framework

1D radiative Transfer solver:

Pre-compute the profile for a range of halo mass at z>25, assuming a galaxy model, and following the halo growth.

1D radiative Transfer solver:

Pre-compute the profile for a range of halo mass at z>25, assuming a galaxy model, and following the halo growth.

Overlap of ionized bubbles :

-Identify connected ionized regions

-Spread the excess ionisation fraction at the boundary of the regions

21-cm light-cone

Computation time (single core)

- Profile calculations for 1 set of parameters for full halo catalogues at all redshifts: ~15 minutes
- Painting profiles on each N-body snapshots:

~1 minutes (128³ mesh) or ~10 minutes (256³ mesh)

Emulation of the profiles

Solver runtime: ~15 minutes Emulator runtime: ~10 ms

Painted profiles using emulator

Next steps to speed up the profile painting

- Use **GPUs** (ongoing): ~100 times faster
- Use Machine learning: expect \$1 second

- Halo-model based approach gives a fast and flexible way of exploring many cosmological and astrophysical models
- We can put constraints on non-cold dark matter models using SKA observations of the cosmic dawn
- We are developing a very fast simulation code (Timothee)
- Final interpretation framework will be able to analyse any summary statistics derived SKA observations
- Field-level inference by forward-modelling telescope effects with Tools21cm

Linear power spectra

z = 0

Halo mass function

$$rac{\mathrm{d}n}{\mathrm{d}\mathrm{ln}M} = -rac{ar
ho}{M}
u f(
u) rac{\mathrm{d}\mathrm{ln}\sigma}{\mathrm{d}\mathrm{ln}M} \; ,$$

$$M = \frac{4\pi}{3}\bar{\rho}(cR)^3$$

$$\begin{split} f(\nu) &= A \sqrt{\frac{2q\nu}{\pi}} (1+\nu^{-p}) e^{-q\nu/2} \\ \sigma^2(R,z) &= \int \frac{\mathrm{d}k^3}{(2\pi)^3} P_{\mathrm{lin}}(k) \mathcal{W}(k|R) \\ \mathcal{W}(k|R) &= \frac{1}{1+(kR)^\beta} \;. \end{split}$$

Mass accretion rate

Halo bias

$$b(M) = 1 + rac{q
u-1}{\delta_c(z)} + rac{2p}{\delta_c(z)[1+(q
u)^p]}.$$

Cooray & Sheth (2002)

Stellar to halo mass relation

$$f_*(M) = \frac{2(\Omega_b / \Omega_m) f_{*,0}}{(M/M_p)^{\gamma_1} + (M/M_p)^{\gamma_2}} \times S(M)$$

$$S(M) = [1 + (M_t/M)^{\gamma_3}]^{\gamma_4},$$

(SG & Schneider 2022)

Fast and accurate method to obtain dTb maps :

1. Density field and halo growth :

-Use N-body sim (pkdgrav) for the density field and halo catalogs (rockstar)

-Use merger trees to fit the halo mass accretion rate (MAR) : $M_{
m ac}(M,z) = M \exp\left[lpha(z_0-z)
ight]$

2. Sources of radiation:

- Relate halo growth to star formation rate via a double power law: $f_*(M)\equiv \dot{M}_*/\dot{M}_{
m ac}$

- Parameterize in a flexible way the galaxy spectra in ionising, Xray, and Lyman-alpha bands (power laws and/or black body)

3. IGM thermal and ionisation state :

- Assume spherical symmetry : solve 1D coupled RT equations, following the halo growth, from cosmic dawn to the end of reionisation (z<6).

4.dTb maps:

- Paint Temperature and Ionisation profiles around each halo of the catalog.
- Spread the excess ionisation fraction where bubbles overlaps