Post-reionisation 21cm Cosmology Sky and Instrument Simulations

Devin Crichton and ETHZ Radio Cosmology Group[†] SKACH Consortium Meeting @ ETHZ 24.05.22

[†]Alexandre Refregier, Marta Spinelli, Sara A. Safari, Pascal Hitz, Pascale Berner

HI Intensity Mapping

- Hyperfine Hydrogen transition line at 1420.4 MHz
- Efficiently and tomographically map cosmological volumes
 - Generally low angular resolution but redshift information cheap
 - Probe epoch of reionisation at low frequencies and large scale structure at high frequencies.

Post-reionisation IM

- v > 200-300MHz
- Biased tracer of large scale structure
- Cosmological constraints from HI power spectrum
- $\circ \quad \text{Large volumes achievable} \\$

Credit: Wikimedia Commons

HI Power Spectrum

- Primordial non-gaussianity
- Modified gravity theories

- Growth of structure
- Geometric Constraints
- Expansion rate
- Dark energy

• Non-linear dynamics

ETH zürich

• HI content of galaxies

HI Power Spectrum

- Primordial non-gaussianity
- Modified gravity theories

- Growth of structure
- Geometric Constraints
- Expansion rate
- Dark energy

• Non-linear dynamics

ETH zürich

• HI content of galaxies

Instrument Diversity

- Power spectrum sensitivity:
 - \circ k₁: Angular scales (baselines/beam)
 - $\circ \quad \ \ k_{_{I\!I}}:k_{_{\mathsf{F}\mathsf{G}}} \to \mathsf{Channel width} \ \ / \ k_{_{\mathsf{NL}}}$

HI Power Spectrum

- Primordial non-gaussianity
- Modified gravity theories

- Growth of structure
- Geometric Constraints
- Expansion rate
- Dark energy

- Non-linear dynamics
- HI content of galaxies

Systematics / Chromaticity and Foregrounds

- Foregrounds are the primary challenge for 21cm cosmology
 - Galactic signal brighter by many orders of magnitude
- Signal and Foregrounds have different, *on-sky* properties
 - Galactic emission is:
 - Polarised
 - Strongly correlated over wide frequency bands
 - Structured on the sky in ~known way
 - In principle, there are not many mixed *on-sky* degrees of freedom
- Mode-mixing inherent in measurement is a major issue
 - Instrument has chromatic response fundamentally as well as arising from systematics
 - With perfect knowledge of the instrument, this can be accounted for, however the large contrast in signal strengths can make small reconstruction residuals a big problem

ETH zürich

-0.0004

Single Dish Observations with MeerKAT

Cosmology with MeerKAT is underway

MeerKLASS pilot survey:

- 11 hours, ~200 deg²
- Demonstrated analysis and foreground mitigation techniques work on real data
- Synchrotron model constraints
- Cosmological signal detected in cross-correlation with WiggleZ

Credit: Jingying Wang et al. 2021 | arXiv: 2011.13789

SKA Interferometric Intensity Mapping

- Work package at ETHZ for Digital Twin project (Sara A. Safari @ ETHZ)
 - Develop flexible, scalable power spectrum extraction pipeline
 - Robust to spectral gaps
 - Include primary beam models and foreground mitigation

- Mosaicing / survey strategy optimisation
 - Commensural opportunities

Instrumental Systematics

- Instrument modeling is critical
 - Chromatic response needs to be characterised
 - Signal loss needs to be minimal and understood
 - Incorporate instrument simulation techniques
- Beam measurement informative
 - External constraints on chromaticity
 - \circ Holography, drone etc.

Credit: Marta Spinelli et al. 2021 | arXiv: 2107.10814

Pinocchio Sky Simulations

- Developing 21cm sky
- PINOCCHIO LPT haloes + HI mass function → Simulated sky maps
 - Use empirical halo model from
 Padmanabhan et al. 2017
- Fast and robust alternative to n-body simulations suitable for forward modeling and x-corr.
- Aim significant scale up simulations and provide interface in digital twin
 - Lower mass resolution
 - Range of cosmologies and mass function parameters

Credit: Pascal Hitz and Pascal Berner (ETHZ PhD Students) + Digital Twin group

mΚ

1.26018

ETH zürich

Other ETH work

- HIRAX Correlator and Science Data Processor
- Drone beam mapping
- Holographic Beam mapping

Thierry Viant, Andre Renard, Keith Vanderlinde and others

Thanks!