# SKACH

The variable MID-band 6 filter: a key component for the MID-band 6/multi-band receiver (Work Package 2360)



Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland





# **Toward Mid6**





















Heterodyne



#### Pros:

- ✓ Proven trusted
- ✓ High performance
- ✓ Optimum spurious noise
- ✓ High dynamic range
- EMI immunity

Cons&Challenges :

- X SWaP
- X Many filters

Down-Conversion/Zero IF



Pros:

- ✓ Maximum ADC bandwidth
- ✓ Simplest wideband option Cons&Challenges:
- X Image rejection (I/Q balance)
- old X In-band IF harmonics
- X EMI immunity (IP2)
- X DC and 1/f noise
- X SWaP

## **Direct Sampling**



Pros:

- ✓ Simple architecture
- ✓ No mixer

Cons&Challenges :

- X ADC input bandwidth must be high
- X Gain not distributed across frequency
- ★ ADC DC power maybe high







EV10AS940, one of the fastest possible ADC @ 10bit. Main Features:

Max Sampling frequency (Fs): 12.8 GSPS.

BW(-3dB) 35GHz

Power 2.5W @12.8 GHz

SFDR 55dB up to 35GHz











EV10AS940, one of the fastest possible ADC @ 10bit. Main Features:

Max Sampling frequency (Fs): 12.8 GSPS. BW(-3dB) 35GHz

University of Applied Sciences and Arts

Western Switzerland

Power 2.5W @12.8 GHz

SFDR 55dB up to 35GHz





HE VD SCHOOL OF ENGINEERING AND MANAGEMENT



EV10AS940, one of the fastest possible ADC @ 10bit. Main Features:

> Max Sampling frequency (Fs): 12.8 GSPS. BW(-3dB) 35GHz Power 2.5W @12.8 GHz

SFDR

55dB up to 35GHz







University of Applied Sciences and Arts Western Switzerland

de Suisse occidentale



Bandpass Filter, total band to cover 15...25 GHz

**Divided into Sub-Bands (SB)** 







HE VD SCHOOL OF ENGINEERING AND MANAGEMENT





Cheby is selected. **Goals & Constraints:** Determine order N (odd orders are prefered) Insertion loss IL **Quality factor Q** 

Python modules are developed

...



Colorbar: -60 dB rejection BW cheby1, Bandpass: 15.0-17.5GHz, (Frequency(-60dB) |rejection BW)[X:Undersampling impossible] (max Samp. freq[GHz]})

| 4           | 11.6 11.0                    | 11.7 10.8                                            | 11.8 10.5                   | 11.8 10.4 | 11.9 10.2 | 11.9 10.1 | 12.0 9.9 | 12.0 9.8             | 12.1 9.7 | 12.1 9.6 | 12.1 9.5 | 12.2 9.4               | 12.2 9.3 | 12.2 9.3 | 12.2 9.2 |  |  |  |
|-------------|------------------------------|------------------------------------------------------|-----------------------------|-----------|-----------|-----------|----------|----------------------|----------|----------|----------|------------------------|----------|----------|----------|--|--|--|
|             | X                            | X                                                    | X                           | X         | X         | X         | X        | X                    | X        | X        | X        | X                      | X        | X        | X        |  |  |  |
| ĿO -        | 13.0 7.3                     | 13.0 7.1                                             | 13.1 7.0                    | 13.1 6.9  | 13.1 6.9  | 13.2 6.8  | 13.2 6.7 | 13 2/6.7             | 13.2 6.6 | 13.3 6.5 | 13.3 6.5 | 13.3 6.5               | 13.3 6.4 | 13.3 6.4 | 13.3 6.3 |  |  |  |
|             | X                            | X                                                    | X                           | X         | X         | X         | X        | X                    | X        | X        | X        | X                      | X        | X        | X        |  |  |  |
| order       | 13.6 5.6                     | 13.7 5.5                                             | 13.7 5.4                    | 13.7 5.4  | 13.8 5.3  | 13.8 5.3  | 13.8 5.2 | 13.8 5.2             | 13.8 5.2 | 13.8 5.1 | 13.8 5.1 | 13.9 5.1               | 13.9 5.1 | 13.9 5.0 | 13.9 5.0 |  |  |  |
| 6           | X                            | X                                                    | X                           | X         | X         | X         | X        | X                    | X        | X        | X        | X                      | X        | X        | X        |  |  |  |
| Filter      | 14.0 4.7                     | 14.1 4.6                                             | 14.1 4.6                    | 14.1 4.5  | 14.1 4.5  | 14.1 4.5  | 14.1 4.4 | 14.1 4.4             | 14.2 4.4 | 14.2 4.4 | 14.2 4.3 | 14.2 4.3               | 14.2 4.3 | 14.2 4.3 | 14.2 4.3 |  |  |  |
| 7           | √(12.5)                      | √(12.4)                                              | √(12.4)                     | √(12.4)   | √(12.4)   | √(12.4)   | √(12.4)  | ~(12.4)              | ~(12.4)  | √(12.4)  | √(12.3)  | √(12.3)                | √(12.3)  | √(12.3)  | √(12.3)  |  |  |  |
| <b>co</b> - | 14.3 4.1                     | 14.3 4.1                                             | 14.3 4.0                    | 14.3 4.0  | 14.3 4.0  | 14.3 4.0  | 14.3 3.9 | 14.4 3.9             | 14.4 3.9 | 14.4 3.9 | 14.4 3.9 | 14.4 3.9               | 14.4 3.8 | 14.4 3.8 | 14.4 3.8 |  |  |  |
|             | √(12.3)                      | √(12.2)                                              | √(12.2)                     | √(12.2)   | √(12.2)   | √(12.2)   | √(12.2)  | ~(12.2)              | √(12.2)  | √(12.2)  | √(12.2)  | √(12.2)                | √(12.2)  | √(12.2)  | √(12.2)  |  |  |  |
| 6           | 14.4 3.7                     | 14.4 3.7                                             | 14.5 3.7                    | 14.5 3.7  | 14.5 3.7  | 14.5 3.6  | 14.5 3.6 | 14.5 3.6             | 14.5 3.6 | 14.5 3.6 | 14.5 3.6 | 14.5 3.6               | 14.5 3.5 | 14.5 3.5 | 14.5 3.5 |  |  |  |
|             | √(12.1)                      | √(12.1)                                              | ∽(12.1)                     | √(12.1)   | ∽(12.1)   | √(12.1)   | (9.1)    | √(9.1)               | ∽(9.0)   | √(9.0)   | ∽(9.0)   | √(9.0)                 | ∽(9.0)   | ∽(9.0)   | ✓(9.0)   |  |  |  |
|             | 0.5                          | 0.6<br><b>es</b> ·s                                  | 0.7<br>50                   | 0.8       | 0.9       | 1.0       | 1.1<br>R | 1.2<br>ipple level c | 1.6      | 1.7      | 1.8      | 1.9<br>/D SCHOOL<br>OF |          |          |          |  |  |  |
| Univ        | Hau<br>d<br>ersity of Applic | ute Ecole Spéci<br>le Suisse occid<br>ed Sciences an | ialisée<br>entale<br>d Arts |           |           |           | 9        |                      |          |          |          |                        |          |          |          |  |  |  |

Western Switzerland



**Q**<sub>0</sub> is calculated using Dishal's method

$$IL(f_c) = \frac{4.343f_c}{\Delta f Q_u} \sum_{i=1}^N g_i \, \mathrm{dB}$$





(b) Type 2

SCHOOL OF

AND

ENGINEERING

MANAGEMENT

#### Calc IL dB @ **f**<sub>0</sub>=16.25, BW=2.5 GHz and rp of Chebyshev circuit = 1 dB

|            |      |       |       |       |       |       |       |       |       | Unloa | ided Q |        |        |        |        |        |        |        |        |        |       |
|------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
|            | 10.0 | 114.7 | 219.5 | 324.2 | 428.9 | 533.7 | 638.4 | 743.2 | 847.9 | 952.6 | 1057.4 | 1162.1 | 1266.8 | 1371.6 | 1476.3 | 1581.1 | 1685.8 | 1790.5 | 1895.3 | 2000.0 | 0.0   |
| 4          | 57.7 | 5.0   | 2.6   | 1.8   | 1.3   | 1.1   | 0.9   | 0.8   | 0.7   | 0.6   | 0.5    | 0.5    | 0.5    | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2   |
| i≓ ∽       | 54.7 | 4.8   | 2.5   | 1.7   | 1.3   | 1.0   | 0.9   | 0.7   | 0.6   | 0.6   | 0.5    | 0.5    | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | - 0.2 |
| e e        | 45.0 | 3.9   | 2.1   | 1.4   | 1.0   | 0.8   | 0.7   | 0.6   | 0.5   | 0.5   | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | -0.4  |
|            | 42.1 | 3.7   | 1.9   | 1.3   | 1.0   | 0.8   | 0.7   | 0.6   | 0.5   | 0.4   | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | 0.2    | 0.2    | -0.6  |
| a er       | 32.4 | 2.8   | 1.5   | 1.0   | 0.8   | 0.6   | 0.5   | 0.4   | 0.4   | 0.3   | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | -0.8  |
| <b>ດ</b> - | 29.6 | 2.6   | 1.3   | 0.9   | 0.7   | 0.6   | 0.5   | 0.4   | 0.3   | 0.3   | 0.3    |        | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.1    | 1.0   |
|            |      |       |       |       |       |       |       | ~ ~   |       |       |        |        |        |        |        |        |        |        |        |        | 10    |

Calc IL dB @ f<sub>0</sub>=16.25, BW=2.5 GHz and rp of Chebyshev circuit = 1.5 dB

| 6          | 33.1 | 2.9   | 1.5   | 1.0   | 0.8   | 0.6   | 0.5   | 0.4   | 0.4   | 0.3   | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 1.0  |
|------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| <b>8</b> e | 34.9 | 3.0   | 1.6   | 1.1   | 0.8   | 0.7   | 0.5   | 0.5   | 0.4   | 0.4   | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | 0.2    | -0.8 |
| ord        | 46.4 | 4.0   | 2.1   | 1.4   | 1.1   | 0.9   | 0.7   | 0.6   | 0.5   | 0.5   | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | -0.6 |
| e e        | 48.3 | 4.2   | 2.2   | 1.5   | 1.1   | 0.9   | 0.8   | 0.6   | 0.6   | 0.5   | 0.5    | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | -0.4 |
| n <u>∏</u> | 59.8 | 5.2   | 2.7   | 1.8   | 1.4   | 1.1   | 0.9   | 0.8   | 0.7   | 0.6   | 0.6    | 0.5    | 0.5    | 0.4    | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | -0.2 |
| 4          | 61.7 | 5.4   | 2.8   | 1.9   | 1.4   | 1.2   | 1.0   | 0.8   | 0.7   | 0.6   | 0.6    | 0.5    | 0.5    | 0.4    | 0.4    | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    |      |
|            | 10.0 | 114.7 | 219.5 | 324.2 | 428.9 | 533.7 | 638.4 | 743.2 | 847.9 | 952.6 | 1057.4 | 1162.1 | 1266.8 | 1371.6 | 1476.3 | 1581.1 | 1685.8 | 1790.5 | 1895.3 | 2000.0 | -0.0 |
|            |      |       |       |       |       |       |       |       |       | Unloa | ided Q |        |        |        |        |        |        |        |        |        |      |

#### $Q_0>400 \rightarrow CavitySurfaces+losses of moving elements$

**Hes**∙so

Haute Ecole Spécialisée de Suisse occidentale

University of Applied Sciences and Arts Western Switzerland



# **Specification of All SBs**

| R = 1 dB |                                                           | A <sub>r</sub> = 60 dB   |         |        |                 |                       |                         |          |        |                 |                        |                         |         |        |                 |                                                       |        |        |        |
|----------|-----------------------------------------------------------|--------------------------|---------|--------|-----------------|-----------------------|-------------------------|----------|--------|-----------------|------------------------|-------------------------|---------|--------|-----------------|-------------------------------------------------------|--------|--------|--------|
|          |                                                           |                          |         |        |                 |                       |                         |          |        |                 |                        |                         |         |        |                 |                                                       |        |        |        |
|          | 19                                                        | t band-pa                | ISS     |        |                 | 2n                    | d band-pa               | ass      |        |                 | Зr                     | d band-pa               | ISS     |        |                 | 4t                                                    |        |        |        |
|          | f <sub>p</sub> : 15                                       | GHz f <sub>p+</sub> : 13 | 7.5 GHz |        |                 | f <sub>p</sub> : 17.5 | GHz f <sub>p+</sub> : 2 | 20.0 GHz |        |                 | f <sub>p-</sub> : 20.0 | GHz f <sub>p+</sub> : 2 | 2.5 GHz |        |                 | f <sub>p</sub> .: 22.5 GHz f <sub>p+</sub> : 25.0 GHz |        |        |        |
| N-Orde   | der F <sub>r-</sub> F <sub>r+</sub> B <sub>r</sub> Min FS |                          |         |        | F <sub>r-</sub> | F <sub>r+</sub>       | Br                      | Min FS   |        | F <sub>r-</sub> | F <sub>r+</sub>        | Br                      | Min FS  |        | F <sub>r-</sub> | F <sub>r+</sub>                                       | Br     | Min FS |        |
| 4        | 11.936                                                    | 21.992                   | 10.056  | -      | 4               | 14.344                | 24.4                    | 10.056   | -      | 4               | 16.773                 | 26.829                  | 10.056  | -      | 4               | 19.216                                                | 29.272 | 10.056 | -      |
| 5        | 13.161                                                    | 19.945                   | 6.7833  | -      | 5               | 15.622                | 22.405                  | 6.7832   | -      | 5               | 18.091                 | 24.875                  | 6.7836  | -      | 5               | 20.566                                                | 27.351 | 6.7845 | -      |
| 6        | 13.775                                                    | 19.056                   | 5.2815  | -      | 6               | 16.253                | 21.534                  | 5.2816   | -      | 6               | 18.736                 | 24.018                  | 5.2817  | -      | 6               | 21.223                                                | 26.506 | 5.2827 | -      |
| 7        | 14.124                                                    | 18.586                   | 4.4624  | 12.391 | 7               | 16.609                | 21.071                  | 4.4623   | -      | 7               | 19.098                 | 23.562                  | 4.4641  | 11.781 | 7               | 21.59                                                 | 26.052 | 4.4627 | -      |
| 8        | 14.341                                                    | 18.305                   | 3.9642  | 12.203 | 8               | 16.831                | 20.795                  | 3.9639   | 10.397 | 8               | 19.324                 | 23.289                  | 3.9653  | 11.645 | 8               | 21.817                                                | 25.784 | 3.9673 | 10.314 |
| 9        | 14.485                                                    | 18.122                   | 3.6369  | 12.081 | 9               | 16.977                | 20.614                  | 3.6363   | 10.307 | 9               | 19.472                 | 23.111                  | 3.6389  | 9.2445 | 9               | 21.967                                                | 25.608 | 3.641  | 8.5359 |
|          |                                                           |                          |         |        |                 | <u> </u>              |                         |          |        |                 |                        |                         |         |        |                 |                                                       |        |        |        |

#### R = 1.5 dB $A_r = 60 dB$

|         | 1s                    | t band-pa               | ISS     |        |   | 2nd band-pass         |                         |          |        |   | 3rd band-pass          |                         |          |        |   | 4th band-pass         |                 |        |        |
|---------|-----------------------|-------------------------|---------|--------|---|-----------------------|-------------------------|----------|--------|---|------------------------|-------------------------|----------|--------|---|-----------------------|-----------------|--------|--------|
|         | f <sub>p</sub> : 15 ( | GHz f <sub>p+</sub> : 1 | 7.5 GHz |        |   | f <sub>p</sub> : 17.5 | GHz f <sub>p+</sub> : 2 | 20.0 GHz |        |   | f <sub>P-</sub> : 20.0 | GHz f <sub>p+</sub> : 2 | 22.5 GHz |        |   | f <sub>p</sub> : 22.5 |                 |        |        |
| N-Order | F <sub>r-</sub>       | F <sub>r+</sub>         | Br      | Min FS |   | F <sub>r-</sub>       | F <sub>r+</sub>         | Br       | Min FS |   | F <sub>r-</sub>        | F <sub>r+</sub>         | Br       | Min FS |   | F <sub>r-</sub>       | F <sub>r+</sub> | Br     | Min FS |
| 4       | 12.132                | 21.638                  | 9.5058  | -      | 4 | 14.55                 | 24.055                  | 9.5054   | -      | 4 | 16.986                 | 26.492                  | 9.5061   | -      | 4 | 19.436                | 28.942          | 9.5062 | -      |
| 5       | 13.276                | 19.773                  | 6.4967  | -      | 5 | 15.74                 | 22.237                  | 6.4968   | -      | 5 | 18.212                 | 24.709                  | 6.4968   | -      | 5 | 20.69                 | 27.187          | 6.4978 | -      |
| 6       | 13.849                | 18.955                  | 5.1056  | -      | 6 | 16.329                | 21.435                  | 5.1054   | -      | 6 | 18.813                 | 23.92                   | 5.1066   | -      | 6 | 21.3                  | 26.407          | 5.1067 | -      |
| 7       | 14.176                | 18.518                  | 4.3422  | 12.345 | 7 | 16.663                | 21.006                  | 4.3429   | -      | 7 | 19.153                 | 23.495                  | 4.3421   | 11.748 | 7 | 21.644                | 25.989          | 4.3451 | -      |
| 8       | 14.379                | 18.256                  | 3.8765  | 12.17  | 8 | 16.87                 | 20.747                  | 3.8769   | 10.373 | 8 | 19.362                 | 23.241                  | 3.8788   | 11.621 | 8 | 21.859                | 25.736          | 3.8771 | 10.294 |
| 9       | 14.516                | 18.083                  | 3.5671  | 9.0417 | 9 | 17.008                | 20.579                  | 3.5711   | 10.289 | 9 | 19.502                 | 23.075                  | 3.573    | 9.2299 | 9 | 21.999                | 25.572          | 3.5728 | 8.524  |
|         |                       |                         |         |        |   |                       |                         |          |        |   |                        |                         |          |        |   |                       |                 |        |        |



















# VARIABLE Passband filtering for undersampling ADCs

- Band to be covered 15-25GHz
- Or better 15-30GHz=1 octave (1:2 ratio) =WIDE band!
- Most «tunable filters» +-5% with standard methods: adjustable to some fixed specification
- → we need to get back to basics and «make it move»
- → we need an actuator
- ➡ fortunately we have one from a biomedical project



- Miniature step motor, Distance resolution ~0.1um/step! will be sufficient
- Lots of other technological challenges (sliding contacts at 20GHz???)







- Filter requirements, type and topology are determined.
- Filter architecture is chosen
- Using a wide band & Fast ADC
- Tunable design(possibility to switch between SBs).







## **Contacts**

Mohammad Reza Khalvati mohammad.khalvati@heig-vd.ch

SKACH Instrumentation Program chair: Dominique Bovey (HEIG-VD) <u>dominique.bovey@heig-vd.ch</u> +41 24 557 27 54 / +41 79 327 71 53

HES-SO-level administration/coordination () SKACH board member for HES-SO Evelina Breschi <u>evelina.breschi@hes-so.ch</u> Phone: +41 58 900 01 12

HEIG-VD-level administrative contact: Pascal Coeudevez pascal.coeudevez@heig-vd.ch +41 24 557 27 61







### Goal: How to couple cells effectively (to achieve a sufficient coupling level)





